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Optimization of hyperplanar transition states
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A method for systematically finding the optimal orientation and location of a hyperplanar dividing
surface during a transition state theory calculation of a transition rate is presented. The optimization
can be carried out during a reversible work evaluation of the free energy barrier. An application to
Al adatom diffusion on an AILOO) surface is described. There, the method can converge to give the
free energy barrier for the optimal mechanism, a concerted displacement, even when the calculation
is initially set up for the less optimal hop mechanism. This illustrates that the method can reveal the
optimal mechanism of a transition even when the calculation is started with an incorrect guess.
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I. INTRODUCTION unstable mode. For many systems the harmonic approxima-
tion is, however, not accurate enough. This is likely to be the
Transition state theoryTST) (Refs. 1, 2 is a highly  case when the atoms are weakly bound compared with the
successful, approximate theory for calculating rates of tranthermal energy and when the transition involves a region on
sitions in atomic systems where the classical equations ahe potential energy surface with many saddle points.
motion can be used to describe the dynamics of the atoms. The choice of the dividing surface can be guided by a
The basic idea is to divide the configuration space of thesariational principle. It can be shown that TST always over-
system by a dividing surface into a region corresponding taestimates the rate, so the optimal dividing surface is the one
an initial state and a region corresponding to a final state. lfnat leads to the smallest estimate of the tdt&ruhlar and
the system ha® dimensions, the dividing surface h&  co-workers have formulated many different versions of
—1 dimensions. The rate of the transition is then approxivariational TST, where the full calculation of the rate con-
mated as the probability of finding the system in the dividingstant is repeated for different choices of the transition State.
surface times the rate of escape from the dividing surfacsince any recrossing of the dividing surface leads to an over-
towards the final state. Often, the TST estimate of the rate iestimate in the rate constant, one might assume that minimiz-
accurate enough, but it is important to choose the dividingng the number of recrossings will give the lowest rate esti-
surface well. A poorly chosen dividing surface leads to amate. Makarov and Metiu have showed that this may not
poor rate estimate. The choice of a dividing surface can bee the casé.A more rigorous formulation is in terms of
nontrivial even for simple systems. A major challenge is tothe free energy. As was pointed out by Chandler, the divid-
find good dividing surfaces in high-dimensional systemsing surface with the highest free energy gives the best TST
When a more precise estimate of the rate is needed, the catate estimaté.
rection to TST can be obtained from classical dynamics The free energy of the dividing surface can be evaluated
simulations where the system is started in the dividing surby calculating the reversible wollRW-TST) of pushing the
face and the recrossings of the classical trajectory througbystem from the initial state towards the final state. The di-
the dividing surface monitored. This is a simple calculation ifviding surface of maximum free energy is the optimal choice
the TST estimate is not off by more than one or two orders ofor the transition state, since it gives the smallest rate esti-
magnitude, again requiring that the transition state dividingmate. A general formulation, including arbitrary shape of the
surface be chosen well. In the end, TST provides a procedurdividing surface, has been developed by Ciccotti and
for dealing with the time scale problem in atomic scale tran-co-workers® When the dividing surface is taken to be a hy-
sitions in condensed phases, namely, the very long time scajgerplane, the equations for evaluating the reversible work
for reactive events compared with the fast time scale okimplify greatly. Mills, Schenter, and deson showed that
atomic vibrations. the free energy consists of a contribution from the translation
TST is most often applied within the harmonic approxi- of the hyperplane against the force acting on it and a contri-
mation, where the partition function of the system in thebution from the rotation of the hyperplane against the gener-
dividing surface and in the initial state is approximated by aalized torquée. An equivalent formulation was later given by
harmonic partition functioi. The problem then reduces to Neria, Fischer, and Karplu$.
finding all the relevant saddle points on the potential energy  Previously, the orientation of the hyperplaier the
surface. The assumption here is that only a few saddle pointshape of the dividing surface in the more general formulation
are needed. At each saddle point, the dividing surface isf Ciccotti and co-workepshas been a predetermined func-
taken to be the hyperplane going through the saddle poirtion of the location. Often the distance between some chosen
with the normal given by the displacement vector of theatoms, or the minimum energy path for the transition is used
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to parametrize the progression of the hyperplane from the
initial state towards products in the reversible work calcula-
tion. The orientation of the hyperplane is then predetermined,
for example with the normal vector parallel to the tangent of
the minimum energy path.

We present here a new method where the orientation of
the hyperplane is not a predetermined function of the reac-
tion coordinate, but is optimized at each step of the revers-
ible work calculation. The free energy of the hyperplane is
maximized with respect to both translation and orientation.
This can lead to significantly better transition state dividing
surfaces and thereby better estimates of the rate. An optimi-
zation with respect to just the reaction coordinate is a one-
dimensional optimization. The orientational optimization is
D-2 dimensional and represents a much larger degree of op-
timization. As a result, the inclusion of orientational optimi-
zation makes it less critical which path is chosen to param-
etrize the hyperplane progression to begin with. We have
here used a straight line interpolation between initial and
final states. As will be demonstrated below, the large flexibil-
ity and systematic optimization of the hyperplanar dividing . 1. A two-dimensional model system illustrating the use of hyperplanes
surface in this new method can lead to convergence to as dividing surfaces. The reacting regiBnis surrounded by five product
transition state for a different optimal transition mechanismyegionsP;—Ps. First order(X) and second orde{®) saddle points are
than the one assumed inially, thereby correcting an incorZiewr 11 S TSY thidng surfce 1 e absence of enuopc cfects
rect preconceived notion of the transition mechanism. Th@yperplanar tangent surfaces are showp-h,. Near the saddle points,
method is easy to implement and requires only the energy afiese can be good approximations to the optimal dividing surface. However,
the system and he force acting on the atoms. R gy e o e et e caads o e by

Ultlmatel_y’ a robust method that_qoes not req_u"e knOWI_notg preve?]t ¥he system from slipping into an arzijace,nt progﬂctpvﬁm‘l Y
edge of the final state and the transition mechanism could bgample into stat®, when confined to hyperplarte,).
used to calculate the long time scale evolution of a system.

This type of approach has been formulated for harmonic

systems.' The method presented here could, in favorableiym distribution of energy is maintained in all degrees of
cases, be used to simulate long time scale dynamics in theeedom of the reactants.

more general, anharmonic cases. The use of hyperplanar di- | any classical trajectory originating in the reactant re-

viding surfaces in the current formulation, however, restrictsyion recrosses the dividing surface any number of times
the applicability of the method, as will be discussed below. TsT will give an overestimate for the exact rate constant,

KTST=KEXACT 14 |f there exists a dividing surface with no
recrossings, then the TST rate constant will be exact. The

Il. METHODOLOGY transition state theory rate constakt®’, is given by
TST is based on three assumptidrEhe first one is the (o, ]y QF
Born—Oppenheimefadiabati¢ approximation. The move- KTsT=22>1

s . 2 @' 1
ment of the nuclei in the system is assumed to be slow

enough that the electrons are always in the lowest quantunvhere(|v, |)/2 is the average velocity normal to the dividing
state for any given configuration of the nuclei. The transitionsurface in the direction of the produc®? is the configura-
must not involve electronic excitations. We will focus heretion integral of the system confined to the dividing surface,
entirely on classical systems, i.e., systems where the motio@R is the configuration integral of the system in the reactant
of the nuclei of the atoms can be described by classical meegion.

chanics. Extensions of TST to quantum systems have been If multiple products can be formed, then the transition
presented and the methodology for optimizing the dividingstate can be chosen as a dividing surface surrounding the
surface could be generalized to quantum transition state®actant state region and the TST rate constant is then the
within that formulationt? total rate of escape. Figure 1 shows a reactant reBisar-

The second assumption introduces a hypersurface in th®unded by five product regiori?;—P5. An optimal divid-
configuration space of the nuclei, separating the reactant aridg surface, in the absence of entropic effects follows the
product regions, such that if a path crosses this surface goirmgptential energy ridge and is a curved surface. In general it is
from one of the states to the other, it will not recross thedifficult to construct such a surface. A simple approximation
surface for a long time. is to use the tangent hyperplanes going through the saddle

The third assumption is that thermal equilibrium haspoints to represent the dividing surface locally. For example,
been reached within the reactant region of configuratiorhyperplaneh; in Fig. 1 is a good approximation to the di-
space and the transition rate is low enough that an equilibviding surface for the transition fromR to P,. If the poten-
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tial energy rises quickly away from the saddle point, the
system will be trapped in the bottleneck region when con-
fined toh;. However, if another product region is near the
saddle point and the potential energy does not rise signifi-
cantly in between the two, or if the potential energy ridge is
highly curved, then the hyperplane constraint will not con-
fine the system to the bottleneck region. This is illustrated
with hyperplaneh, in Fig. 1 for the transition fronR to Ps.

For a high enough temperatute, will not give a good ap-
proximation to the dividing surface betwe&and Ps.

A. Fixed hyperplane orientation

A reversible work formulation of TST including curved
reaction coordinates was developed by Mills and
co-workers’ A configuration integral of the system confined

to a hyperplane in the reactant regi@lz,R, is introduced, FIG. 2. A path connecting the reactaRt,and productP, is used to param-
" etrize the progression of the hyperplane during reversible work evaluation of
<|vL |> QZ Qi the free energy barrier. In the OH-TST method the orientation of the hyper-
KRWTST_ 2 — 7 —R —5R- 2 plane as well as the location of the hyperplane is systematically adjusted to
2 Q QZ find the maximum free energy barrier. This gives the optimal hyperplanar

] ) ) ) . . ) transition state. The hyperplane is characterized by the nofigaind the
The last ratio of configuration integrals in this equation canintersection with the patily, wheres is a scalar that runs from 0 in the

be written in terms of a free energg, “~/*sT, wherekg is  reactant state to 1 in the product state.
the Boltzmann constant andis the temperature. Hera A
is the free energy difference between two hyperplanes, one

located near the reactant state and the other one at the divid- AA(S) = s E (1 kR 4
ing surface. The rate constant then becomes (8)=- 0< n(1-«Ry))sds’, (4)
(RWTST (v ) QZR AALT @ whereF,=F(rg) - is the normal component of the force
= —e B,

2 R acting on the system in the plane at configuratiqn R;
=(rs—1I's)-dng/df, and k=d#/ds is the first order curva-
The free energy difference is calculated by evaluating thgure of the patlf.

reversible work required to translate and rotate the hyper-  wjith the extension of the method, presented below, there
plane fromZ~ to the dividing surface. For each position of 5 no need to use the minimum energy path. A straight line
the plane, a thermal average of the force acting on the systeffterpolation betweeR andP has been used in the applica-
is calculated. This is illustrated in Fig. 2. The evaluation oftjgng presented here.

the prefactor (|vl|)/2)(QZR/QR) is discussed in detail in
Secs. lIF and 11 G. B. Introduction of orientational optimization
In order to describe the progression of the hyperplane, a* P
path connecting the reactants and products is specified and Here, we present an extension of the reversible work
the distance from a reference point in the reactant redton, formulation where optimization of the hyperplane orientation
to the point of intersection between the path and the hyperis incorporated into the reversible work calculation. With
plane, becomes a progress varialdescaled such thas little additional computation, the evaluation of the free en-
=0 atR ands=1 atP. Often, the minimum energy path ergy barrier then naturally leads to an optimal hyperplanar
(MEP) is choser?. The MEP is a natural choice for a reaction dividing surface. We will refer to this method as optimal
coordinate when the transition is dominated by a singlehyperplanar TSTIOH-TST). The method involves rotating
trough in the potential energy surface and when entropic efas well as translating the hyperplanar dividing surface during
fects are not so strong that the free energy landscape béhe reversible work calculation. The hyperplane is moved
comes significantly different from the potential energy land-against the translational force acting on it and is rotated
scape. The MEP can be found efficiently using the nudge@gainst the rotational force acting on it until both forces are
elastic band methot?~1°In previous calculations the orien- sufficiently small. Since the reversible work of moving and
tation of the hyperplane was a predetermined functios. of rotating the plane represents an increase in the free energy,
The normal of the hyperplanég, was taken to be the tan- the optimized hyperplanar surface corresponds to a maxi-
gent to the MEP as. This ensures that the orientation of the mum in the free energy.
hyperplane near the saddle point is such that the normal isin Let r represent the configuration of a system in an
the direction of the unstable mode of the potential surface. N-dimensional configuration space. The potential energy is
The free energy change between an initial hyperplangiven by the functioV/(r). The force acting on the system is
and a plane further along the path is given by the line integiven byF(r)=—VV(r). The initial and final state®® and
gral, P, are two locally minimized configurations on the potential
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plane i plane i+1 motion are modified by setting;=0 if F;v;<0, i.e., the
velocity of the plane is zeroed if the plane has gone past the
maximum free energy position.
r, i:\ R;(#; F) T, fi _ _The time evqutio.n of the orlentatlon of th.e hype[plane
: e is given by an equation of motion for the unit normal,
l 'Ri(ﬁ"F') guideline - ' 'S
. The force acting to change the normal ig=((f
-Fi.)Ri/ai|Ri|%), where the armR;, is defined asR;=r
-T, and a;i|R;|? is the moment of inertia of plane The
parametery; is chosen to control how fast the plane rotates.
FIG. 3. An iteration in the progression of the hyperplane. Plané is The ChOICF’t of this parameter 1S d!scussed below. The equa-
found from the force acting on the system when it is confined to plafiee 10N of motion for the unit normal is
force acting on the system in configuratignF;=F(r;), is divided into two M
componentsF, ; andF, . The arm,R;, is defined byR;=r;—I's. The Ng=—17s. (8)

plane is translated along the path according-t6, ; and rotated about the . . . .
intersection point’s according toR;(n;-F;). The figure illustrates the cal- In the velocity Verlet form for a numerical integration,

culation for a single configuratiom;, but the translation and rotation of the the equation of motion for the unit normal becomes

plane are based on canonical ensemble averages. ﬁi+1: ni+ Ata)i . %AtzTi , (9)
At
wi+1= 0~ 5 (Tt 7). (10

energy surface. A patils, is parametrized between the two
minima, with a reaction coordinate such thatl'y=R and  ; is the velocity vector giving the rate of change of the
I';=P. I's will be chosen here as the straight line connectingorientation of the planep=df/dt. Equations(9) and (10)
R and P in which casel's=R+s(P—R). This line will are equations of motion for a linearized rotation in
henceforth be referred to as the guideline. The reactant and-dimensions, see Appendix A. The orientation of the plane
product regions in configuration space &@andP, respec- is made to converge to the orientation at whielk0 by
tively. zeroing the rotational velocity when the plane has rotated
The system is confined to a hyperplaherhe normal to  beyond the zero force orientation, otherwise only the com-
the hyperplane is denoted By I's is the point of intersection ponent of the velocity along the force is kept. That is7;if
between the hyperplane and the guideline. The hyperplane isv;>0, then w; is set to 7;(w;-7;), where 7; is the unit
translated along the path and simultaneously rotated dhout vector in the direction ofr;, but otherwisew; is set to0.
in a stepwise manner as shown in Figs. 2 and 3. This creat@gote thatfi;, ; calculated from Eq(9) must be normalized,
a progression of hyperplanes. Each hyperpliarne the pro-  since linearized rotation does not preserve magnitude, see
gression is characterized ty and fi;, and is given by the Appendix A.
points in coordinate space that satisfy={r e RN|A;-(r The first plane in the progression is chosen to be slightly
—I's)=0}. away from the minimum corresponding to the reactants so
The plane moves according to the translational and rotathat the force acting on the plane is nonzero. The first plane
tional force acting on it. The motion is described by the timein the progression, therefore, has some finite value=e0,
evolution ofs andfis. The direction of the forces is reversed says=s;. We typically choose 00s;<0.1 andr=I's as a
so that the plane climbs up the free energy surface. Choosingiarting configuration of the system in the first plane. Later
the direction of the unit normal of the plane to be such that iton, the free energy from this starting plane to the reactant
points towards increasirg i.e., A t<>0, wheret, is the unit ~ minimum is evaluated. The forde, and the velocity in
tangent to the path, and lettirfg(s) denote the thermally the first step are set to zero when evaluatingn Eq. (7) and
averaged force acting on the system in the direction of théhe vectorsry and v, are set to0 in order to calculaten,
normal, Fs=(F; s/ms=Ag((F(r))-As)/mg, the equation of using Eq.(10).

motion fors s Once the next position and orientation of the plane has
been calculated, a thermal averageFofand 7 need to be
§=—Fs. (5)  evaluated again. A starting position of the system in the new

plane corresponding to the average position in the previous

Here mg is the effective mass of the plane. We use the Ve'plane can be obtained from

locity Verlet algorithm'® involving both s and the corre-

sponding velocityp, for the numerical calculation, Ni+1=ls  *Risq, (11
Si+1:Si+AtUi_%At2Fi , (6) where
t Riv1=(R)—Mi((R)- (A1 1—M)). (12
vi+1=0i~ 5 (FisatFy), (7} The arm calculated from this equation should be adjusted so

that R 1|=|(R;)|, because the rotation should not effect
whereAt is a time step for the plane progression. The choicehe length of the arm. The initial coordinates of the system in
of the mass of the plane will be explained later. In order toa calculation of a thermal average is only important when the
converge on the plane position whete= 0, the equations of sampling is constrained to a subset of configuration space
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because of a high barrier between one region and another. hrecessary to eliminate the effect of the other symmetrically
order to obtain a free energy within the accessable subspaeguivalent transitions. A single hyperplane is only going to

and get a smooth integration of the reversible work from onée a good dividing surface for one of the transitions. Unless
plane to another, the system needs to be started up in thkere is a large potential energy barrier between the potential

same region of configuration space in the new plane. energy troughs corresponding to the different processes, the
Following is a summary of the algorithm for advancing system will tend to escape from the bottleneck region for one
the hyperplane: of the processes into a product basin of another process,
Step 1 Calculate the thermal average Bf; and r; in  thereby reducing the estimate of the free energy barrier. The
planei; OH-TST method will under such circumstances give some
Step 2 Calculatev; from Eq. (7), usingF; andF;_4, sort of an average dividing surface for the two processes. If a
and then calculats;,; from Eq. (6); system has fourfold symmetry, then the optimal dividing sur-
Step 3 Obtainw; using Eq.(10), using7; andr,_;, and  face for one of the transitions is related to the optimal divid-
thenf;, 4 from Eq. (9); ing surface for another equivalent one by a 90° rotation
Step 4 EvaluateR; ,; by using Eq.(12); about theC, axis.
Step 5 Repeat step&—4, until the canonical ensemble When the system has-fold symmetry about a given
averages of the forceBg4 and 75 acting on the plane are symmetry axis, a product states can have equivalent product
sufficiently small. states rotated by 2/n about the axis. Letting?;, i=1,...n

It can be useful to place an upper limit on the translation—1, denote the minimum energy configurations of the
and rotation of the plane during the progression such thatquivalent product states, a set of unit vectogs, i
AS;<ASa{i) and A 6;<A 6,,,(i) to ensure that the free en- =1,...n—1, pointing to those states are given by
ergy integration is smooth enough. The parametg@ndm;

can be adjusted to ensufes; and A 6; fall within those lim- ﬁi:|Pi_ Rl
its. Pi —-R|’

dOur ex%er(;efn ceéndigatei;[he ch%icebof th; paramet:ers This symmetry can be used to restrict the configurational
and ; needed for Egs(6)—(10) can be based upon values sampling of the system to include only one of the symmetri-

tha_t work at zero temperature. This is a quick CaICUIat'(_)ncally equivalent regions of configuration space. Then, the
which leads to convergence of the plane to a saddle poin

. ) hyperplane progression converges to a dividing surface for
gﬁpﬁ;ﬁfeom‘ ande; may need some tuning at very high only one of the product states. Half-linds, originating at

the reactant minimum energy configurati®,parallel to the
unit vectorsp; are defined as

(13

C. Refinement of the guideline
. o li={reRN[r=R+1tp;,t=0}, i=1,.n—1. (14)
Using the same guideline for the whole plane progres-

sion may lead to slow or incomplete convergence of the hyAt every step during the thermal sampling, the distance of
perplane. This occurs particularly when the average positiothe configuration of the system, from each of the half-lines
of the system is not near the guideline. In such cases a smd|lis calculated
rotational force calls for a large change in theoordinate. —_—
Since we have not explicitly cguplmn%ﬁ in the equations di=d(li,n)=VIR=r*=[(R—r)-pipil* (15
of motion, the net force on the plane alosgan become | the configurational sampling is to be restricted to the part
zero, resulting in no further changessnwhile the rotating  of configuration space which includes final stitg thend,
force remains nonzero. should be the smallest distance. If at a stéfpe distancel;
This problem can be fixed by shifting the guideline. Af- tyrns out to be greater than any of the otider i=2,...n
ter the forceF changes sign for the first time, the guideline is — 1, sayd,, then a step back t_, is taken and the incre-
updated at each step. The guideline is then taken to be thfent revised so as to create a new point within the right
line going though the average position in the previous planesypregion of phase space. For example, if a classical dynam-
(ri), in the direction of the normd; . This means the plane jcs simulation based on the velocity Verlet algorithm is used
is from now on translated along the normal at each step. to carry out the thermal sampling, then the veloaiy ; is
When the guideline is changed, the rotational force mayeflected about the mirror plane that refleftsontof,. The

become too large. In such cases, one or more purely rotgrormal of the reflection plane is in the direction fof—p,
tional steps at fixed can be taken until the rotational force gnd the reflected velocity/_, is given by

has dropped below the given tolerance.

Vi 1=Vj_1—2(Vj_1- 012 Q1o (16)
D. Incorporation of symmetry whereg;; is the normalized vectay;; given by
Transitions in crystals can be equivalent by symmetry. G1o=Pr— P ((P1— Py)- A)A 17)

For example, in the Al adatom diffusion on the(AD0) sur-
face, discussed below, there are four equivalent directions fand A is the normal of the hyperplane being sampled. Since
the displacement of the atoms, irrespective of what the dethe new velocity vector needs to lie within the hyperplane,
tailed mechanism of the transition is. If we wish to optimize the part offp; — p, that is parallel to the hyperplane normal is
a dividing surface for one of the transitions, then it may besubtracted out. The vectay; is normalized to preserve the
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magnitude ofv; _;. This reflection does not, on average, af- e (ry g - 1))
fect the total energy of the system during a velocity Verlet — ri
sampling of the hyperplane. T / ﬁZRT
/ R
E. Integration of the free energy 8 / z

The free energy integration is performed in a way that is
analogous to Eq(4). The reaction path is defined as the r.
piecewise linear path that connects the thermally averaged
configuration of the system(y), in adjacent planes in the FIG. 4. Evaluation of the configuration integral raf /Qg from a clas-
progression. The rotation and translation of the hyperplané?ca' trajectory. .A hyperplangR is placed in the rgactant region. The clas_-
are performed independently of each other so the free ener%s)llcal traje_ctory is used tRo calcula_te how 'much time the system spends in a

. : . Ice of width e aroundZ”. The trajectory is assumed to be continuous and
of the rotation and translation can be integrated separatelyse siice thin enough that configurations ; andr; can be connected by a

The two integrals are straight line segment. The amount of time the system spends in the slice is
proportional to the fraction of the line segment, andr; lying in the slice.
The calculation of the ratio is done in terms of the projection onto the

t dr’;
AAgandt) = — fO<FH>t" Wdt'- (18 normal, e/nzr- (F 41— ;).

!

wheret is the distance along the piecewise linear reaction
path starting at the initial configuratic(msl>, and 1/e if r is in a slice of width e around ZR

=

t di’ 0 otherwise.
AA(t)= f0<(F\|'ﬁ)R>o" St (19 (20
) o The functiond, is normalized in the direction of the normal
During the optimization, the plane may move back andang, therefore, has the value ok Bverywhere in the hyper-

forth over the free energy ridge before it converges at thgyjane. The ratio can then be evaluated as
optimal plane. The system then typically slides considerably

within the plane as the plane crosses the ridge. These kinds Q_ZR_ _ [rOJfizr- (r—Tzr)]e V" keTdr 5
of jumps will make the integrands in Eg&l8) and (19) (o L e VWikeTqr =(d9).
discontinuous and the numerical evaluation of the integrals (21)

will have errors because the average position of the system

changes too much between adjacent planes. This proble[ﬂqe thermal average can be eyaluated from a classical tra-
can be circumvented by selecting for the integration Omy]_ectory. _The ensemble ave_fa_@‘? IS pr(_)portlonal to the frac-
those planes that are on the same side of the free eneré&?n of tlme the trajectory is in the slice. Whenever t_he clas-
ridge and ignore the ones on the other side. That is, only'cal trajectory crosses the hyperplane, i.e., whens a
planes with an average force with the same sign as the averonfiguration on one side of the plane and configuratjon

age force in plane 1 are included in the integration. AnothePPt@ined one time stept, later is on the other side of the

problem that may arise is that some planes may have alane, the two can be connected by linear interpolation and

higher free energy than the optimal plane, which we Canthe time spent in the slice of widthican be estimated from
check after the optimal plane has been found, using E@5. the fraction of the line segment that lies within the slies
and(19). This happens when the plane charges up a potentidfustrated in Fig. 4. The time is Ate/|(ri—r;,1)-fizr|.
energy slope before it has rotated sufficiently. Those pIaneE'ere’ the vector; —r;., has been projected onto the normal

are likewise discarded. By applying this “grooming” of the nz;r to evaluates,, the fraction of time spent in the slice
planes in the progression, the free energy integration h

argeeds to be multiplied by the value 8f in the slice, 1¢ and
worked well in the applications we have made as will bethen the limite—0 can be taken

demonstrated in Sec. lll. QzR 1 1 Ate
—x=—lm=2 —
) . L . QR tiote 0 € |(ri—risq)-AzR|
F. The ratio of configuration integrals in the reactant
region At 1
. =— 2 =7 (22
In order to complete the evaluation of the rate constant, tiot < [(ri—riy 1) NzR|

the prefactor needs to be evaluated. The configuration inte;l-he sum is over pairs of points, andr, . ;, along the dy-
b 1+1

gral ratio,Q7"/QR, can be calculated using classical dynam-pamical trajectory that are on opposite sides of the hyper-
ics of a single trajectory coupled to a thermal bdthr ex-  plane, zR. During the simulation, it is possible to detect
ample the velocity Verlet algorithm including stochastic \yhen the system cross&& by noting when the dot product
collisions'®). We initially assumez® is a slice of widthe fizr- (i 1— 'yr) changes sign.

around the hyperplan&R={r e R|fir-(r—I';r)=0}. R
stands for the reactant regidiyr is the normal to the plane,
I';r is some reference point in the plane, and a configu-
ration of the atoms in the system. L&} represent the con- The final contribution to the prefactot|v|), can be
straint that the system lies within the slice of width evaluated by integration,

G. Calculation of the factor (| v|)
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A. Saddle points at T=0K

The method can be applied without much computational
cost atT=0 K since there is no need to evaluate a thermal
average for each position of the hyperplane. The system then
simply sits in a local potential energy minimum within the
hyperplane. After the hyperplane has been moved the system
is typically not at a minimum and it relaxes to the closest
minimum energy configuration. As the hyperplane is pushed
uphill and rotated against the force acting on it, the hyper-
plane will reach the top of and be aligned with the potential
ridge. There the system is at a local minimum within the
hyperplane and a local maximum in the direction of the nor-
mal to the hyperplane. The system will, therefore, end up

_ _ _ _ sitting at a first order saddle point. However, since the sys-
FIG. 5. An illustration of the calculation of the effective magssContour t d t | th . d th ddl int d
lines of the velocity distribution for coordinates of two particles,andx, em O_es !‘10 expiore the reQ'O“ aroun € saddie point, _an
are shown. The concentric circles represent the distribution if the mass dll derivatives of the potential are zero at the saddle point,
the two particlestn; andm,, is the same. The eIIipti_caI curves repr_esentthe the orientation of the plane is not well defined in the
case whenm,>m;. The vectorfi represents a direction for which one =0 K case. In the calculations presented in this section. the
would like to determine the effective mass. Typicafiyis the normal to the ) . ’
transition state hyperplane. system was simulated at a very low temperatukgT
=10 'EA, whereE” is the energy of the saddle point with
respect toR.
) Figure 6 shows the hyperplane progression in four dif-
1 fwve*,uv /2kBTdU k T T .
(lvl) _tJo _ B 293) ferent two-dimensional systenfisere the hyperplane reduces
2 2 fgeﬂwZ/ZkBTdv 27p’ to a ling. The form of the potential function in each case is
) ) ) . ... a LEPS potential coupled to a harmonic potential, with the
Here u is the effectl\_/e mass for motion across the dividing addition of some Gaussians (b)—(d). The LEPS part of the
surface in the direction of the normal, potential describes a three atom system where the atoms lie
_2 > 2. o on a line and the central atofatom B can form one bond
m= i m;(ny+ny+nz). (24 either with the atom to the leftatom A) or the atom to the
) ) ) ) ~right (atom Q. A fourth atom, D, is coupled in a harmonic
The indexi runs over all atoms in th_e sy_stem. This equatlonway to the central atom, B. The functional form and param-
for w can be derived by considering the Maxwell— oiors are given in Appendix B. The initial guideline for ad-
Boltzmann distribution for velocity, illustrated in Fig. 5. For vancing the hyperplane is a straight line that connBcmd
Zﬁg%ﬁ'olp aan?r/fntzp e?jf t\év(?topza_rt(lﬁlesn, )thgsvglo(:r'% n theP. As the hyperplane moves up the slope, it rotates and even-
:' )A('+ % Where 'z :nv a':]; v n2 | gtl>vein i/r:/e tually converges to an optimal hyperplane, denoted by t.
U1X1TU2%2, v1= v, afifua=lou, v g the It serves as a good check on the numerical integration of
magnitude ofv. The probability distribution of velocity in the reversible work to calculate the intearal &t 0 K. be-
any direction is proportional te “**/*eT, where u is the : : g
: S R cause the integrated reversible work should then equal the
effective mass for(t:eZ(TLecg;?zr;.TThls ?;Stn'lbz‘ff[]z'i);'jks‘; pro'potential energy difference between the initial state and the

1 - v v — v 1 . . . . . . .
portional  to e M1t TIE =g T TN TR T, gaqdle point. The reaction coordinate is the piecewise linear
wherem, andm, give the mass of the two particles. Com- hath connecting the minimum energy configuration of the
paring the two eql,lzlvalentzexpressmns for the velocity distri-gystem in each hyperplane. The result of the integration is
bution showsu=nim,+n3m,. An extension to higher di-  gn4wn in Fig. 7a). The integrated reversible work is almost
mensions gives Eq24). identical to the potential energy difference, as it should be.

The integral was evaluated by using the trapezoidal rule,
where the average value of the force for two adjacent planes
IIl. APPLICATIONS was calculated and multiplied by the increment in the reac-

The method has been applied to several two-dimensiondion coordinate._A higher order integration scheme could_give
systems, both to test and illustrate how the method worksNOre accurate integral and allow for a coarser progression of
The method has also been applied to a realistic, multidimenPlanes.
sional system with several hundred degrees of freedom. Itis, The translational and rotational force acting on the hy-
of course, most important that the method can be applied terplane at each position illustrate how convergence is
complex, multidimensional systems. reached. As shown in Fig.(@), the translational and rota-

In all calculations of canonical ensemble averages wdional force increase as the plane climbs up the potential
use a single molecular dynamics trajectory. We simulate surface and reach a maximum near the inflection point of the
system at a given temperature by applying stochastic collipotential energy curve. Then, the forces decrease and be-
sions to the trajectorif come negligible at the converged hyperplane.
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FIG. 7. (8) The integrated reversible wortshown with doty at T=0 K

along the reaction coordinate for the potential energy surface shown in Fig.
6(a). The integration starts from plarig®. The full curve is the potential
energy difference along the same reaction coordinate. The agreement be-
tween the two illustrates the accuracy of the integration procedoré&he
translational and rotational force acting on the planes in the plane progres-
sion shown in Fig. ).

B. Free energy barriers at finite temperature

The two-dimensional potential surfadg shown in Fig.

6(a) was used to calculate the free energy barrier at a tem-
perature ofkgT=0.1EA. The plane progression is shown in
Fig. 8(@). This progression is similar to the one obtained at
T=0K [Fig. 6(@)], except that the optimal dividing surface

is better aligned with the potential energy ridge in the finite
temperature case. This is due to better sampling of the region
around the saddle point at finite temperature.

It is important to allow the hyperplane to rotate. For
comparison, Fig. @) shows a plane progression where the
orientation is kept fixed. This is the way free energy barriers
are often calculated. Figurg@ illustrates how the lack of
orientational optimization can affect the calculated free en-
ergy barrier. Without the rotation, the calculated free energy
barrier is about 25% lower, corresponding to a 20 times
larger rate than the orientationally optimized transition state
gives.

The prefactor was also evaluated for the transition
shown in Fig. 8a). The ratio of the configuration integrals,
FIG. 6. Calculation of_ an optimal hyperplaneTatO K. After convergence QileR was found to be 0.7660.005 for V, at kgT
is reached the plane mclu_des a saddle pom_t on the potential energy surfacg.o_lEA_ The value Of<|v|> was found to be 0.399, so the
The hyperplane progression for four two-dimensional potentials is shown, . . H-TST 5
(@—(d). ZR is the initial plane and the optimized plane is labeled with t. The fate constant is estimated to k8 =(4.5£0.2)x10 "
initial guideline is the straight line connectirgand P. The plane progres- For comparison the exact rate calculated using the hyperdy-

sion is shown as a series of lines. Not all the planes used in the calculationgmics methot and a flat bias potentﬂfl gave the value
are shown. The filled circle in each plane shows the configuration of thekTST: (4 4+0 1)>< 107719

system. It is essential for the hyperplane to rotate in order to reach conver- VT e e . .
gence, but the final orientation of the plane is not well defined because only T his system is, in fact, simple enough that harmonic TST
the minimum energy configuration of the system within the plane isgives a very similar value for the rate const&fifS'=4.3
sampled. X107,
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FIG. 9. The potential energy within an optimal hyperplanar dividing surface
for a potential constructed by adding sinusoidal ripples to the potential sur-
face shown in Fig. @). This potential surface has multiple saddle points in
the transition region. The free energy curve obtained by the reversible work
integration is shown in Fig.(8).

original results, without the ripples. This example illustrates
that the OH-TST calculation can, in principle, be applied to
_ \ikgT=0.1 EA complex systems where the location of the transition state
T3 2 dividing surface cannot simply be inferred from the location

X of a saddle point on the potential energy surface.
0.8/ © -
C. Symmetric Eckart barrier
0.6
An optimization of the dividing surface for the two-
§0_4 dimensional Eckart barrier has been presented by Makarov

and Metiu® They carried out a direct calculation of the rate
fixed orientation constant for various dividing surfaces. The potential energy

is given by
0 0.2 0.4 0.6 0.8 1 Vo 1 )
Reaction Coordinate VEckar X,Y) = T Tax\ + P e (y—Cx)*, (25
FIG. 8. (a) A reversible work calculation at a finite temperatuigT COSH(?)

=0.1EA, for the potential energy surface shown in Figa)6 The initial . N ) 4
plane isZ® and the optimized one is ¥b) Same as ina), except the ~ With V(=0.0156, a=3.97, su0°=1.04x10"", and C
orientation of the plane is not allowed to change, as is often done in free= 10. A contour plot of the potential is shown in Fig. 10.

energy calculationgc) A comparison of the calculated free energy for the Makarov and Metiu tested several dividing surfaces go-
two plane progressions shown (i@ and(b). This illustrates the importance

of including rotation of the plane. The dashed line shows the result of afreén_g_ t_hrOUQh Q(,Y) = (0*0) by Varying the orientation of the
energy calculation when small rippléa set of sinusoidal functiondiave  dividing surface. The smallest rate was found at an angle of

been added to the potential energy surface. The value of the free energy @ with respect to thg-axis atkgT= O.lEA, parallel to the

not affected significantly but, since the potential surface now has ripples anCB : ; _ ;
multiple saddle points in the transition region, as shown in Fig. 9, harmoni otential energy rldge a=0. At hlgher temperaturd{BT

TST would fail in this case. =0.3E", the best dividing surface had a much larger tilt
from the y-axis, about 70%° There is a large number of
recrossings of the dividing surface in this system, especially

However, it is easy to construct a potential surface wherat the higher temperature. Makarov and Metiu found that the
harmonic TST is not adequate. For example, adding a shebéest diving surface is not the one minimizing the number of
of two-dimensional sinusoidal waves on top of ¥Mgpoten-  recrossing$.

tial, of the form 0.0025sin(89Qsin(80y) gives a surface We carried out OH-TST calculations, first by constrain-

which is essentially the same a&, but now has small ing the dividing surface to go throug®, 0), and found op-

ripples. Figure 9 shows the slice of the potential surface thatimal orientation in good agreement with the results of
lies within the optimal transition state. The ripples stronglyMakarov and Metiu, both at the low and high temperature
effect the harmonic TST estimate of the transition rate, but1°® at low T and 74° at highT). A full optimization of the
this is a failure of the harmonic approximation. The ripplesdividing surface, both location and orientation, gave the re-
here are small enough that the rate is not significantly efsults shown in Fig. 10. Here, the optimal dividing surface has
fected. The free energy curve obtained from the reversiblenoved slightly away fromX,y)=(0,0). In this calculation,
work calculation is shown in Fig.(6) and is close to the the configuration®R andP were chosen to be the minimum
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T
fewest

recrossings
kgT=0.1 E*

EA=037eV

transition state
kaT=03E*

transition state
kpT=0.1 E*

-2 -1 0 1 2 FIG. 11. Two different diffusion mechanisms for an Al adatom on an
Al(100 surface, the hop and two-atom concerted displacement. The con-
certed displacemeiitexchange”) process has lower activation energy. Note
FIG. 10. Optimal dividing surfaces, corresponding to maximum free energyinhat the final state is quite different in the two processes.
for the two-dimensional Eckart barrier at lovkgT=0.1E”) and high

(ksT=0.3E") temperature. The plane leading to fewest recrossings at the

lower temperature is shown with a thick dashed liRefs. 6, 20 and is  Resylts of two calculations of the free energy barrier for the

clearly different from the plane with maximum free energy. . . .
concerted process are given, the only difference being the
parameter determining the moment of inertia of the hyper-

energy configurations in a slice of the potential parallel to thePlane and the maximum angle of rotation in a single step.

x-axis (there is not a stable minimum energy configuration These values were 0.00473 and 5° in one case, and 0.0141

on this potential surfage and 1° in the other. The free energy rises faster in the case

At the higher temperature, the average kinetic energy igvhere the hyperplane rotates faster. The difference in the
a considerable portion of the barrier height. The basic ascalculated free energy barrier is less than the error bar asso-
sumptions of TST may not apply in such cases as the transfiated with the numerical calculation.
tion is not slow. The OH-TST method, nevertheless, con- Figure 12 also shows the results of a calculation where
verges in this case to an optimal dividing surface whichthe initial guideline was drawn from the initial state to the
agrees closely with the dividing surface obtained by direcfinal state of the hop mechanism. However, during the plane

rate calculations. progression the hyperplane rotated enough that it converged
on an optimal hyperplanar dividing surface for the concerted
D. Al adatom diffusion on Al (100) displacement process. This was verified by minimizing con-

figurations from several locations within the transition state
The most important question is how well the OH-TST
algorithm performs in high dimensional problems. We ap-
plied the method to Al adatom diffusion on a(A00 sur-
face. The system is simulated as a slab of 6 Al layers with 50
atoms in each layer. The atoms in the two lowest layers were
kept fixed. An adatom was placed on the surface in the .21 Hop — Exchange
stable, fourfold hollow site. The system therefore consists of
201 atoms, or 603 degrees of freedom. ‘
The transition of interest is the diffusion of the adatom
on the surface. The simplest mechanism for diffusion is a
hop over the bridge sitésee Fig. 11 This was the assumed
mechanism until Feibelman carried out density functional
theory (DFT) calculations of the energetics of various tran-
sition mechanisms and found that a two-atom concerted did='G- 12. Free energy curves &t=210K for the hop and concerted dis-
. . . . 21 placement(“exchange” mechanism of Al adatom diffusiofsee Fig. 11
placement mechanism is lower in energsee Fig. 11 The free energy barrier for the concerted displacement mechanism is found
Both mechanisms result in a diffusion of an adatom on th&o be 0.16 eV while the hop has free energy barrier of 0.33 eV. Two calcu-

surface, but the final state of the two transitions is guitéations of the free energy barrier for the concerted displacement process are
, o] )% p p
different shown. The dashed lines correspond to calculations with three times smaller

h lculati dh k . b oment of inertia than the solid lines. The dashed line farthest to the left
The calculations presented here make use of an embe hows results of calculation where the guiding line is that of the hop mecha-

ded atom methodEAM) potential surface of the Voter— nism, but the hyperplane converges to the transition state of the concerted
Chen forrn?2 The calculated energy barrier for the concerteddisplacement mechanism, which has lower free energy barrier. When the
displacement process is 0.23 eV and 0.37 eV for the hop imoment of inertia is too large, the plane is unable to rotate enough to find
. . . ' “the concerted displacement. This demonstrates how OH-TST can reveal the
quite good agreement with the DFT calculations. The result§pimal transition mechanism even when the method is started up with a

of OH-TST calculations aT=210K are shown in Fig. 12. guideline corresponding a different, less than optimal mechanism.

B Exchange

0 0.2 0.4 0.6 0.8 1
Reaction coordinate
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I

Hop

Re i FIG. 14. Al adatom in a stable position on the(200) surface(the initial
state for diffusion. The atoms are numbered to aid the discussion of the
reaction coordinatetsee text

ended up in the final state for hop, and 59% images ended up

FIG. 13. Anillustration of how OH-TST locates a free energy barrier for the jn the initial state. No image ended up in the final state for
concerted displacement mechanism when the calculation is started out Wi@oncerted displacement

a guideline tailored to the hop mechanism. The filled circles represent mini- . .
mum energy configurations in the reactant redi@ the product region for The OH-TST calculations gave a free energy barrier for

the hop Py, and the product region for the concerted displacementthe concerted displacement of 0.16 eV and a barrier of 0.33
(Pexc)- The angle betweeR,,,— R and Pg,,— R and their relative mag- eV for the hop. The entropic effects within the hyperplane
nitudes in the figure are the same as in the actual system. The hyperplanesﬁg?e larger for the concerted displacement, reducing the bar-
the progression are projected onto the two-dimensional space spanned ?/ by 30% d with 11% f h, h Th .
the two vectord,,,,— R andPg,,— R. The projection of each hyperplane is rler Yy o as cornpar.e wit o for the hop. e tI’aD.SI-
calculated by determining the interception point of the plane with linestion states are quite different, and apparently the transition
throughR and alongPy,,— R andPg,.,— R. The optimal transition state is ~ state for the concerted displacement, where the adatom has
labeled with . Not all planes in the progression are shown. been driven into the surface. has higher entropy.

The direction of the hyperplane normal at the transition

hyperplane. 38% of the trajectories ended up in the final stat tate represents an optimal choice for the reaction coordinate

for the concerted displacement, and 62% trajectories endet rtEe tranlsmon., n tthat regtlon Off contﬂgtjhratlfo“ (sjpa}gg, since
up in the initial state. No trajectory ended up in the final statef € EI/_;;]erp ane IIS a ?)ngen_ttsurAaceA 0 he Tull divi r:ng sur
for hop. This illustrates how the orientational optimization ace. The normal can be written s-{f;,A;, ... fin}, where

makes the method flexible enough to be able to identify ar?achﬁi is a three-dimensional vector corresponding to each

unexpected, optimal mechanism even when the calculation gtom andN is the number of atoms in the system. Atoms

started up with a guideline for a different mechanism. with t_he Iarges_ﬁi are th_e atoms that contribute most to the
Figure 13 shows a schematic explanation of how thig ®action coordinate. This can, for_ example be used to char_-
occurs. The plane progression is represented in a twoe_lcte_nze_the hpp and concerted dl_splacement mechamsms n
dimensional space. This two-dimensional space is spann diffusion. G.'V'ng only.th(Aa magr_ntu-de of the displacement
by the Vectoryo,— R andPe:— R, whereR is the mini- ) each atom in a format(|ni|)_, with i as the atom r_1umber
mum energy configuration in the reactant regiBp,, is the EZZ?:tiEIr?.cigré?r?aféir(lg(gée?)d g(lts)pSIagcaerr;arg 1r’r(1)(gch66(18|(s)r8nahas a
minimum energy configuration in the product region of the110 073. 50.07 90'07 ' h‘.l h h T h T
hop, andPg,., is the minimum energy configuration in the (0.073, 50.07D, %0.070} while the hop mechanism is
product region of the concerted displacement. The projectioﬁ;nl(o'gm’ 8(0.078, 10(_0'078’ 11(0.046, 13(0.046}. The
of Pgen— R is chosen to lie on the-axis pointing in the processes are shown n Fig. .11'.
positive direction. The angle betwed?,,—R and Pgy, The therm_al sampling within the hyperpla_ne was re-
"R is arccos (Pex—R)- (Paos— R)/|Peser— Rl[Pre dgceq by makmg_ use of the fo_urfolq symmetry in _aII the Al
Exch Hop P diffusion calculations as described in Sec. Il D. Without the

—R|)=69°. The projections of the hyperplanes in the pro- . .
gression are given by the lines in Fig. 13, as shown in Ap_symmetry constraint, the OH-TST calculations converged to

pendix C. At first, the plane progression heads towards th& hyperplane Fhat resembled an average plane for two sym-
free energy barrier for the hop mechanism. At some point thénetrlcally equivalent concerted displacement processes.

system in the plane has enough energy to escape from the

valley that leads to the hop into the valley leading to ther?v' SUMMARY

concerted displacement. The method presented here, OH-TST, can be used to find
When the moment of inertia of the hyperplane is in-in a systematic way the optimal hyperplanar dividing surface

creased enough, to 0.154 from 0.00220 in the calculatiofior a TST estimate of a rate constant. The optimization is

described above, the rotation is limited enough that the OHnaturally built into the reversible work evaluation of the free

TST calculation converges on a transition state for the hopenergy barrier. The method can, in principle, be applied to

This was verified by minimizing several images of the sys-large and complex systems. At=0 K the method locates

tem within the transition state hyperplane. 41% of the imagesaddle points. At finite temperature, the method can find an
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optimal dividing surface for highly anharmonic systems, in- (a) — b)
volving many saddle points, where the harmonic approxima- Ay T
tion TST is not applicable. The method can also work where
entropic effects dominate and the optimal dividing surface is
not near a saddle point, as was illustrated with the Eckart \A
barrier test problem. F
OH-TST may be used to predict mechanisms of slow

transitions. An analysis of Al adatom diffusion on(A00) by R/IR|
surface showed that the method is able to find a meChaniSE]G 15. An illustration of the calculation of the rotation of the h

. . . 15. yperplane.
with lower free energy barrier than the one used to start th?a) The rotation of the normal occurs in a two dimensional plane spanned by
calculation. A limitation of OH-TST in that study was the pasis vectord, andb,. (b) The two basis vectors can be taken to be a unit
hyperplanar representation of the dividing surface whichvector in the direction of the ariR and the plane’s normafi. The vectorr
breaks down at temperatures higher than 210 K because tﬁ'é(es_, the change in_ the dir_ection of_the norAmaI. The plane rotates against the

. rotational force acting on it by adding=R(fA-F) to the normal.

system can escape away from the bottleneck region even
though it is confined within the hyperplane. A possible solu-
tion to this problem is to construct a piecewise hyperplanaforce, r, which acts to rotate the normal of the hyperplane in
dividing surface. When the system visits a boundary of twothe plane formed by the arnR, and the normalfi. The
hyperplanes it is either reflected back and kept in the samgagnitude of the rotational force is|=|R||F,| and the di-
hyperplane or it is reflected into the hyperplane on the othefection of ris such as to oppose the force acting on the plane

side of the boundary. This is illustrated in Fig. 1. Hyperplane(thus rotating the plane to higher free energshis gives
h, is used to represent the dividing surface betwBesnd

Ps. At some temperature, the system confinedfawill be = 5|R||F |sign(A- F)=R(A-F). (A1)
able to escape from the bottleneck region conned®rand R| :

Ps into product regionP,. By using two hyperplaned,

and hg, to represent the dividing surfack, in the region APPENDIX B

betweenR and Ps andh in the region betweeR andP,, The two-dimensional potentials used in the test calcula-
this problem could be avoided. Another possibility is to 9€N-tions shown in Figs. @)—6(d) are based on a LEPS plus

eralize the method to curved dividing surfaces. harmonic oscillator potential, gpspio. Shown in Fig. 6a).
The LEPS potential describes the interaction of three atoms
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APPENDIX A JasJsc Jecdac

" (1+a)(1+b) (1+b)(1+
The orientation of the hyperplane is adjusted at each step (1+a) ) )(1+o)

in the plane progression. The normal is rotated in a two- JIardac
dimensional plane, regardless of the dimensionality of the “(1+a)(1+c)
systenT, Consider an arbitrariN-dimensional vectoy. As- ) . )
sume thay is rotated about an angte For pure rotation, we where theQ functions represent Coulomb interactions be-
can choose a basis set fpsuch that the rotation occurs in a tween the electron clouds and the nuclei andXlienctions
two-dimensional subspace of thé-dimensional space. In represent the guantum mechanical exchange interactions.
other words, the rotation affects only two coordinatey @i~ 1hese functions are
this basis. The rotation is perpendicular to the remaining co- d/3
ordinates. Let us assume that is rotated in the Q=3 Ee_za(r_ro)—e_““_ro)), (B2)
(by,by)-plane, as illustrated in Fig. 8.

The projection ofy onto the p;,b,)-plane is the vector and
Yp- The rotation can be accomplished by adding a vestor d
(Ay is perpendicular ty,) to y,. The resulting vectoly, J(r)= Z(e‘za("ro)—6e‘“("’0)). (B3)
must be scaled such thigt|=|y,|. Finallyy, is added to the
part of y that was not projected onto thé,(,b,)-plane, to The parameters used in the calculations presented here are
get the rotated image of. a=c=0.05, b=0.80, roap=ropc=roac=0.742, ang

Figure 15b) illustrates how the normal of a hyperplane = agc=apc=1.942, dpg=dgc=4.746, and dyc=3.445.
is rotated during the plane progression. The normal compofhe LEPS potential is used here in such a way that the po-
nent of the forceF,=F-f, acts on the hyperplane at a point sition of the end atoms A and C is fixed and only atom B is
located atR from the turning point. This causes a rotational allowed to move.

112
: (B1)
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A second degree of freedom is added to the LEPS pohyperplane’s normal is not perpendicular to bgil,, and
tential. This can be interpreted as a fourth atom, D, coupleg,, ., the space spanned by the two-dimensional coordinate

to atom B in a harmonic way, system cannot be a subset of the hyperplane. Since the inter-
ViepsoHd X Y) = Viepd X.T ac—X) ce_pts are p0|_nts on the !Inéﬁop and IExch,. given by, say,
, a=aq and a= «a, respectively, we can write
+ — —
2kC(X (rAC/2 y/C)) ’ (B4) ﬁ'(F_R_alf’Hop)zou (Cl)

wherek.=0.2025,r oc=3.742, ancc=1.154. A contour plot
of this potential is shown in Fig.(6).

The potentials shown in Figs.(lH—6(d) were con- A-(I'=R— asPgycn) =0. (C2
structed by addiny/’(x,y) to the V| gpsondX,y) potential,

and

Equations(38) and (39) can then be multiplied by real

Vi(X,Y) =V epspud X,¥) + V{ (X,y), (B5) numbersy; andy, and added to get
wherei=b,c,d. The form of theV'(x,y) functions was . V1 . V2 .
A-|F'=R- . @1PHop™ Ta’szxch =0,
Vi (x,y)=1.5G(x;2.02083,0.1G(y; —0.172881,0.3h Y172 Y172

Replacing the two parameters by a single parameter
=v,1(y1+ 7v,), this equation becomes

n-(I'=(R+ a’lﬁHop"’ Y(a2Pgxeh— alf’Hop))) =0. (CH

Vy(x,y)=0.3G(x;C(y),0,1), (B8)  This equation shows that the intercept of the two sets above
is a one-dimensional line going through the two interception
points a1Pep and aPgyeh. Therefore the two-dimensional
G(r;rO,Gr):ef(rfro)Z/ZUi (B9) representation of the planes in the plane progression is given
by the set of lines shown in Fig. 13.

Vi(x,y)=2(G(x;1.6,0.3E(y;—2.0,0.5
+G(x;2.4,0.3E(y;2.0-0.5)), (B7)

where the G, E, and C functions are defined as

E(r:rg,a,)=e%( "0, (B10)
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