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Optimization of hyperplanar transition states
Gı́sli H. Jóhannesson and Hannes Jónsson
Department of Chemistry 351700, University of Washington, Seattle, Washington 98195-1700
and Faculty of Science, VR-II, University of Iceland, 107 Reykjavı´k, Iceland

~Received 25 September 2000; accepted 13 September 2001!

A method for systematically finding the optimal orientation and location of a hyperplanar dividing
surface during a transition state theory calculation of a transition rate is presented. The optimization
can be carried out during a reversible work evaluation of the free energy barrier. An application to
Al adatom diffusion on an Al~100! surface is described. There, the method can converge to give the
free energy barrier for the optimal mechanism, a concerted displacement, even when the calculation
is initially set up for the less optimal hop mechanism. This illustrates that the method can reveal the
optimal mechanism of a transition even when the calculation is started with an incorrect guess.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1415499#
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I. INTRODUCTION

Transition state theory~TST! ~Refs. 1, 2! is a highly
successful, approximate theory for calculating rates of tr
sitions in atomic systems where the classical equation
motion can be used to describe the dynamics of the ato
The basic idea is to divide the configuration space of
system by a dividing surface into a region corresponding
an initial state and a region corresponding to a final state
the system hasD dimensions, the dividing surface hasD
21 dimensions. The rate of the transition is then appro
mated as the probability of finding the system in the dividi
surface times the rate of escape from the dividing surf
towards the final state. Often, the TST estimate of the rat
accurate enough, but it is important to choose the divid
surface well. A poorly chosen dividing surface leads to
poor rate estimate. The choice of a dividing surface can
nontrivial even for simple systems. A major challenge is
find good dividing surfaces in high-dimensional system
When a more precise estimate of the rate is needed, the
rection to TST can be obtained from classical dynam
simulations where the system is started in the dividing s
face and the recrossings of the classical trajectory thro
the dividing surface monitored. This is a simple calculation
the TST estimate is not off by more than one or two orders
magnitude, again requiring that the transition state divid
surface be chosen well. In the end, TST provides a proce
for dealing with the time scale problem in atomic scale tra
sitions in condensed phases, namely, the very long time s
for reactive events compared with the fast time scale
atomic vibrations.

TST is most often applied within the harmonic appro
mation, where the partition function of the system in t
dividing surface and in the initial state is approximated b
harmonic partition function.3 The problem then reduces t
finding all the relevant saddle points on the potential ene
surface. The assumption here is that only a few saddle po
are needed. At each saddle point, the dividing surface
taken to be the hyperplane going through the saddle p
with the normal given by the displacement vector of t
9640021-9606/2001/115(21)/9644/13/$18.00
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unstable mode. For many systems the harmonic approxi
tion is, however, not accurate enough. This is likely to be
case when the atoms are weakly bound compared with
thermal energy and when the transition involves a region
the potential energy surface with many saddle points.

The choice of the dividing surface can be guided by
variational principle. It can be shown that TST always ov
estimates the rate, so the optimal dividing surface is the
that leads to the smallest estimate of the rate.1,4 Truhlar and
co-workers have formulated many different versions
variational TST, where the full calculation of the rate co
stant is repeated for different choices of the transition sta5

Since any recrossing of the dividing surface leads to an o
estimate in the rate constant, one might assume that minim
ing the number of recrossings will give the lowest rate e
mate. Makarov and Metiu have showed that this may
be the case.6 A more rigorous formulation is in terms o
the free energy. As was pointed out by Chandler, the div
ing surface with the highest free energy gives the best T
rate estimate.7

The free energy of the dividing surface can be evalua
by calculating the reversible work~RW-TST! of pushing the
system from the initial state towards the final state. The
viding surface of maximum free energy is the optimal cho
for the transition state, since it gives the smallest rate e
mate. A general formulation, including arbitrary shape of t
dividing surface, has been developed by Ciccotti a
co-workers.8 When the dividing surface is taken to be a h
perplane, the equations for evaluating the reversible w
simplify greatly. Mills, Schenter, and Jo´nsson showed tha
the free energy consists of a contribution from the translat
of the hyperplane against the force acting on it and a con
bution from the rotation of the hyperplane against the gen
alized torque.9 An equivalent formulation was later given b
Neria, Fischer, and Karplus.10

Previously, the orientation of the hyperplane~or the
shape of the dividing surface in the more general formulat
of Ciccotti and co-workers! has been a predetermined fun
tion of the location. Often the distance between some cho
atoms, or the minimum energy path for the transition is us
4 © 2001 American Institute of Physics
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to parametrize the progression of the hyperplane from
initial state towards products in the reversible work calcu
tion. The orientation of the hyperplane is then predetermin
for example with the normal vector parallel to the tangent
the minimum energy path.9

We present here a new method where the orientatio
the hyperplane is not a predetermined function of the re
tion coordinate, but is optimized at each step of the reve
ible work calculation. The free energy of the hyperplane
maximized with respect to both translation and orientati
This can lead to significantly better transition state dividi
surfaces and thereby better estimates of the rate. An opt
zation with respect to just the reaction coordinate is a o
dimensional optimization. The orientational optimization
D-2 dimensional and represents a much larger degree of
timization. As a result, the inclusion of orientational optim
zation makes it less critical which path is chosen to para
etrize the hyperplane progression to begin with. We h
here used a straight line interpolation between initial a
final states. As will be demonstrated below, the large flexi
ity and systematic optimization of the hyperplanar dividi
surface in this new method can lead to convergence t
transition state for a different optimal transition mechani
than the one assumed initially, thereby correcting an inc
rect preconceived notion of the transition mechanism. T
method is easy to implement and requires only the energ
the system and the force acting on the atoms.

Ultimately, a robust method that does not require kno
edge of the final state and the transition mechanism coul
used to calculate the long time scale evolution of a syst
This type of approach has been formulated for harmo
systems.11 The method presented here could, in favora
cases, be used to simulate long time scale dynamics in
more general, anharmonic cases. The use of hyperplana
viding surfaces in the current formulation, however, restri
the applicability of the method, as will be discussed belo

II. METHODOLOGY

TST is based on three assumptions.1 The first one is the
Born–Oppenheimer~adiabatic! approximation. The move
ment of the nuclei in the system is assumed to be s
enough that the electrons are always in the lowest quan
state for any given configuration of the nuclei. The transit
must not involve electronic excitations. We will focus he
entirely on classical systems, i.e., systems where the mo
of the nuclei of the atoms can be described by classical
chanics. Extensions of TST to quantum systems have b
presented and the methodology for optimizing the divid
surface could be generalized to quantum transition st
within that formulation.12

The second assumption introduces a hypersurface in
configuration space of the nuclei, separating the reactant
product regions, such that if a path crosses this surface g
from one of the states to the other, it will not recross t
surface for a long time.

The third assumption is that thermal equilibrium h
been reached within the reactant region of configurat
space and the transition rate is low enough that an equ
Downloaded 21 Nov 2001 to 128.95.128.134. Redistribution subject to A
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rium distribution of energy is maintained in all degrees
freedom of the reactants.

If any classical trajectory originating in the reactant r
gion recrosses the dividing surface any number of tim
TST will give an overestimate for the exact rate consta
kTST>kEXACT.1,4 If there exists a dividing surface with n
recrossings, then the TST rate constant will be exact.
transition state theory rate constant,kTST, is given by

kTST5
^uv'u&

2

Q‡

QR , ~1!

where^uv'u&/2 is the average velocity normal to the dividin
surface in the direction of the products,Q‡ is the configura-
tion integral of the system confined to the dividing surfac
QR is the configuration integral of the system in the react
region.

If multiple products can be formed, then the transiti
state can be chosen as a dividing surface surrounding
reactant state region and the TST rate constant is then
total rate of escape. Figure 1 shows a reactant regionR sur-
rounded by five product regionsP1–P5 . An optimal divid-
ing surface, in the absence of entropic effects follows
potential energy ridge and is a curved surface. In general
difficult to construct such a surface. A simple approximati
is to use the tangent hyperplanes going through the sa
points to represent the dividing surface locally. For examp
hyperplaneh1 in Fig. 1 is a good approximation to the d
viding surface for the transition fromR to P2 . If the poten-

FIG. 1. A two-dimensional model system illustrating the use of hyperpla
as dividing surfaces. The reacting regionR is surrounded by five produc
regionsP1–P5 . First order~3! and second order~d! saddle points are
shown. The optimal TST dividing surface in the absence of entropic eff
follows the potential energy ridge as indicated by the dashed curve. T
hyperplanar tangent surfaces are shown,h1–h3 . Near the saddle points
these can be good approximations to the optimal dividing surface. Howe
if second order saddle points are low in energy and/or the potential en
ridge is highly curved near the first order saddle points, the hyperplane
not prevent the system from slipping into an adjacent product well~for
example into stateP4 when confined to hyperplaneh2!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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tial energy rises quickly away from the saddle point, t
system will be trapped in the bottleneck region when c
fined to h1 . However, if another product region is near t
saddle point and the potential energy does not rise sig
cantly in between the two, or if the potential energy ridge
highly curved, then the hyperplane constraint will not co
fine the system to the bottleneck region. This is illustra
with hyperplaneh2 in Fig. 1 for the transition fromR to P5 .
For a high enough temperature,h2 will not give a good ap-
proximation to the dividing surface betweenR andP5 .

A. Fixed hyperplane orientation

A reversible work formulation of TST including curve
reaction coordinates was developed by Mills a
co-workers.9 A configuration integral of the system confine
to a hyperplane in the reactant region,QZR

, is introduced,

kRWTST5
^uv'u&

2

QZR

QR

Q‡

QZR . ~2!

The last ratio of configuration integrals in this equation c
be written in terms of a free energy,e2DA/kBT, wherekB is
the Boltzmann constant andT is the temperature. Here,DA
is the free energy difference between two hyperplanes,
located near the reactant state and the other one at the d
ing surface. The rate constant then becomes

kRWTST5
^uv'u&

2

QZR

QR e2DA/kBT. ~3!

The free energy difference is calculated by evaluating
reversible work required to translate and rotate the hyp
plane fromZR to the dividing surface. For each position
the plane, a thermal average of the force acting on the sys
is calculated. This is illustrated in Fig. 2. The evaluation
the prefactor (̂uv'u&/2)(QZR

/QR) is discussed in detail in
Secs. II F and II G.

In order to describe the progression of the hyperplan
path connecting the reactants and products is specified
the distance from a reference point in the reactant regionR,
to the point of intersection between the path and the hyp
plane, becomes a progress variable,s, scaled such thats
50 at R and s51 at P. Often, the minimum energy pat
~MEP! is chosen.9 The MEP is a natural choice for a reactio
coordinate when the transition is dominated by a sin
trough in the potential energy surface and when entropic
fects are not so strong that the free energy landscape
comes significantly different from the potential energy lan
scape. The MEP can be found efficiently using the nud
elastic band method.13–15 In previous calculations the orien
tation of the hyperplane was a predetermined function os.
The normal of the hyperplane,n̂s , was taken to be the tan
gent to the MEP ats. This ensures that the orientation of th
hyperplane near the saddle point is such that the normal
the direction of the unstable mode of the potential surfac

The free energy change between an initial hyperpl
and a plane further along the path is given by the line in
gral,
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^Fn~12kRt!&s8ds8, ~4!

whereFn5F(r s)•n̂s is the normal component of the forc
acting on the system in the plane at configurationr s , Rt

5(r s2Gs)•dns /du, andk5du/ds is the first order curva-
ture of the path.9

With the extension of the method, presented below, th
is no need to use the minimum energy path. A straight l
interpolation betweenR andP has been used in the applica
tions presented here.

B. Introduction of orientational optimization

Here, we present an extension of the reversible w
formulation where optimization of the hyperplane orientati
is incorporated into the reversible work calculation. Wi
little additional computation, the evaluation of the free e
ergy barrier then naturally leads to an optimal hyperpla
dividing surface. We will refer to this method as optim
hyperplanar TST~OH-TST!. The method involves rotating
as well as translating the hyperplanar dividing surface dur
the reversible work calculation. The hyperplane is mov
against the translational force acting on it and is rota
against the rotational force acting on it until both forces a
sufficiently small. Since the reversible work of moving an
rotating the plane represents an increase in the free en
the optimized hyperplanar surface corresponds to a m
mum in the free energy.

Let r represent the configuration of a system in
N-dimensional configuration space. The potential energy
given by the functionV(r ). The force acting on the system
given byF(r )52¹V(r ). The initial and final states,R and
P, are two locally minimized configurations on the potent

FIG. 2. A path connecting the reactant,R, and product,P, is used to param-
etrize the progression of the hyperplane during reversible work evaluatio
the free energy barrier. In the OH-TST method the orientation of the hy
plane as well as the location of the hyperplane is systematically adjuste
find the maximum free energy barrier. This gives the optimal hyperpla
transition state. The hyperplane is characterized by the normal,n̂s, and the
intersection with the path,Gs, wheres is a scalar that runs from 0 in the
reactant state to 1 in the product state.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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energy surface. A path,Gs , is parametrized between the tw
minima, with a reaction coordinates such thatG05R and
G15P. Gs will be chosen here as the straight line connect
R and P in which caseGs5R1s(P2R). This line will
henceforth be referred to as the guideline. The reactant
product regions in configuration space areR andP, respec-
tively.

The system is confined to a hyperplaneZ. The normal to
the hyperplane is denoted byn̂. Gs is the point of intersection
between the hyperplane and the guideline. The hyperplan
translated along the path and simultaneously rotated abouGs

in a stepwise manner as shown in Figs. 2 and 3. This cre
a progression of hyperplanes. Each hyperplanei, in the pro-
gression is characterized bysi and n̂i , and is given by the
points in coordinate space that satisfyZi5$rPRNun̂i•(r
2Gsi

)50%.
The plane moves according to the translational and r

tional force acting on it. The motion is described by the tim
evolution ofs andn̂s. The direction of the forces is reverse
so that the plane climbs up the free energy surface. Choo
the direction of the unit normal of the plane to be such tha
points towards increasings, i.e., n̂s• t̂s.0, wheret̂s is the unit
tangent to the path, and lettingF(s) denote the thermally
averaged force acting on the system in the direction of
normal, Fs5^Fi ,s&/ms5n̂s(^F(r )&•n̂s)/ms , the equation of
motion for s is

s̈52Fs . ~5!

Here ms is the effective mass of the plane. We use the
locity Verlet algorithm,16 involving both s and the corre-
sponding velocity,vs , for the numerical calculation,

si 115si1Dtv i2
1
2Dt2Fi , ~6!

v i 115v i2
Dt

2
~Fi 111Fi !, ~7!

whereDt is a time step for the plane progression. The cho
of the mass of the plane will be explained later. In order
converge on the plane position whereF50, the equations of

FIG. 3. An iteration in the progression of the hyperplane. Planei 11 is
found from the force acting on the system when it is confined to planei. The
force acting on the system in configurationr i, Fi5F(r i), is divided into two
components,F',i and Fi ,i

. The arm,Ri , is defined byRi5r i2Gsi
. The

plane is translated along the path according to2Fi ,i and rotated about the
intersection pointGsi

according toRi(ni•Fi). The figure illustrates the cal
culation for a single configuration,r i, but the translation and rotation of th
plane are based on canonical ensemble averages.
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motion are modified by settingv i50 if Fiv i,0, i.e., the
velocity of the plane is zeroed if the plane has gone past
maximum free energy position.

The time evolution of the orientation of the hyperpla
is given by an equation of motion for the unit normal,n̂s.
The force acting to change the normal ist i5^(n̂i

•Fi ,i)Ri /a i uRi u2&, where the arm,Ri , is defined asRi5r
2Gsi

, anda i uRi u2 is the moment of inertia of planei. The
parametera i is chosen to control how fast the plane rotate
The choice of this parameter is discussed below. The eq
tion of motion for the unit normal is

n̈̂s52ts . ~8!

In the velocity Verlet form for a numerical integration
the equation of motion for the unit normal becomes

n̂i 115ni1Dtv i2
1
2Dt2t i , ~9!

v i 115v i2
Dt

2
~t i 111t i !. ~10!

v i is the velocity vector giving the rate of change of th
orientation of the plane,v5dn̂/dt. Equations~9! and ~10!
are equations of motion for a linearized rotation
N-dimensions, see Appendix A. The orientation of the pla
is made to converge to the orientation at whicht50 by
zeroing the rotational velocity when the plane has rota
beyond the zero force orientation, otherwise only the co
ponent of the velocity along the force is kept. That is, ift i

•v i.0, then v i is set to t̂ i(v i• t̂ i), where t̂ i is the unit
vector in the direction oft i , but otherwisev i is set to0.
Note thatn̂i 11 calculated from Eq.~9! must be normalized,
since linearized rotation does not preserve magnitude,
Appendix A.

The first plane in the progression is chosen to be sligh
away from the minimum corresponding to the reactants
that the force acting on the plane is nonzero. The first pl
in the progression, therefore, has some finite value ofs.0,
says5s1 . We typically choose 0.0,s1,0.1 andr5Gs1

as a
starting configuration of the system in the first plane. La
on, the free energy from this starting plane to the react
minimum is evaluated. The forceF0 and the velocityv0 in
the first step are set to zero when evaluatingv1 in Eq. ~7! and
the vectorst0 and v0 are set to0 in order to calculatev1

using Eq.~10!.
Once the next position and orientation of the plane h

been calculated, a thermal average ofF and t need to be
evaluated again. A starting position of the system in the n
plane corresponding to the average position in the previ
plane can be obtained from

r i 115Gsi 11
1Ri 11 , ~11!

where

Ri 115^Ri&2n̂i~^Ri&•~ n̂i 112n̂i !!. ~12!

The arm calculated from this equation should be adjusted
that uRi 11u5u^Ri&u, because the rotation should not effe
the length of the arm. The initial coordinates of the system
a calculation of a thermal average is only important when
sampling is constrained to a subset of configuration sp
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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because of a high barrier between one region and anothe
order to obtain a free energy within the accessable subs
and get a smooth integration of the reversible work from o
plane to another, the system needs to be started up in
same region of configuration space in the new plane.

Following is a summary of the algorithm for advancin
the hyperplane:

Step 1: Calculate the thermal average ofFi ,i and t i in
planei;

Step 2: Calculatev i from Eq. ~7!, using Fi and Fi 21 ,
and then calculatesi 11 from Eq. ~6!;

Step 3: Obtainv i using Eq.~10!, usingt i andt i 21 , and
then n̂i 11 from Eq. ~9!;

Step 4: EvaluateRi 11 by using Eq.~12!;
Step 5: Repeat steps1–4, until the canonical ensembl

averages of the forcesFs and ts acting on the plane are
sufficiently small.

It can be useful to place an upper limit on the translat
and rotation of the plane during the progression such
Dsi,Dsmax(i) andDu i,Dumax(i) to ensure that the free en
ergy integration is smooth enough. The parametersa i andmi

can be adjusted to ensureDsi andDu i fall within those lim-
its.

Our experience indicates the choice of the parametermi

and a i needed for Eqs.~6!–~10! can be based upon value
that work at zero temperature. This is a quick calculat
which leads to convergence of the plane to a saddle po
The values ofmi anda i may need some tuning at very hig
temperature.

C. Refinement of the guideline

Using the same guideline for the whole plane progr
sion may lead to slow or incomplete convergence of the
perplane. This occurs particularly when the average posi
of the system is not near the guideline. In such cases a s
rotational force calls for a large change in thes coordinate.
Since we have not explicitly coupleds andn̂ in the equations
of motion, the net force on the plane alongs can become
zero, resulting in no further changes ins, while the rotating
force remains nonzero.

This problem can be fixed by shifting the guideline. A
ter the forceF changes sign for the first time, the guideline
updated at each step. The guideline is then taken to be
line going though the average position in the previous pla
^r i&, in the direction of the normaln̂i . This means the plane
is from now on translated along the normal at each step

When the guideline is changed, the rotational force m
become too large. In such cases, one or more purely r
tional steps at fixeds can be taken until the rotational forc
has dropped below the given tolerance.

D. Incorporation of symmetry

Transitions in crystals can be equivalent by symme
For example, in the Al adatom diffusion on the Al~100! sur-
face, discussed below, there are four equivalent directions
the displacement of the atoms, irrespective of what the
tailed mechanism of the transition is. If we wish to optimi
a dividing surface for one of the transitions, then it may
Downloaded 21 Nov 2001 to 128.95.128.134. Redistribution subject to A
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necessary to eliminate the effect of the other symmetric
equivalent transitions. A single hyperplane is only going
be a good dividing surface for one of the transitions. Unle
there is a large potential energy barrier between the pote
energy troughs corresponding to the different processes
system will tend to escape from the bottleneck region for o
of the processes into a product basin of another proc
thereby reducing the estimate of the free energy barrier.
OH-TST method will under such circumstances give so
sort of an average dividing surface for the two processes.
system has fourfold symmetry, then the optimal dividing s
face for one of the transitions is related to the optimal div
ing surface for another equivalent one by a 90° rotat
about theC4 axis.

When the system hasn-fold symmetry about a given
symmetry axis, a product states can have equivalent pro
states rotated by 2p/n about the axis. LettingPi , i 51,...,n
21, denote the minimum energy configurations of t
equivalent product states, a set of unit vectors,p̂i , i
51,...,n21, pointing to those states are given by

p̂i5
Pi2R

uPi2Ru
. ~13!

This symmetry can be used to restrict the configuratio
sampling of the system to include only one of the symme
cally equivalent regions of configuration space. Then,
hyperplane progression converges to a dividing surface
only one of the product states. Half-lines,l i , originating at
the reactant minimum energy configuration,R, parallel to the
unit vectorsp̂i are defined as

l i5$rPRNur5R1tp̂i ,t>0%, i 51,...,n21. ~14!

At every step during the thermal sampling, the distance
the configuration of the system,r , from each of the half-lines
l i is calculated

di5d~ l i ,r !5AuR2r u22u~R2r !•p̂i p̂i u2. ~15!

If the configurational sampling is to be restricted to the p
of configuration space which includes final stateP1 , thend1

should be the smallest distance. If at a stepj the distanced1

turns out to be greater than any of the otherdi , i 52,...,n
21, sayd2 , then a step back tor j 21 is taken and the incre
ment revised so as to create a new point within the ri
subregion of phase space. For example, if a classical dyn
ics simulation based on the velocity Verlet algorithm is us
to carry out the thermal sampling, then the velocityvj 21 is
reflected about the mirror plane that reflectsp̂1 onto p̂2 . The
normal of the reflection plane is in the direction ofp̂12p̂2

and the reflected velocityvj 218 is given by

vj 118 5vj 2122~vj 21•q̂12!q̂12, ~16!

whereq̂i j is the normalized vectorqi j given by

q125p̂12p̂22~~ p̂12p̂2!•n̂!n̂, ~17!

and n̂ is the normal of the hyperplane being sampled. Sin
the new velocity vector needs to lie within the hyperplan
the part ofp̂12p̂2 that is parallel to the hyperplane normal
subtracted out. The vectorqi j is normalized to preserve th
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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magnitude ofvj 21 . This reflection does not, on average, a
fect the total energy of the system during a velocity Ver
sampling of the hyperplane.

E. Integration of the free energy

The free energy integration is performed in a way tha
analogous to Eq.~4!. The reaction path is defined as th
piecewise linear path that connects the thermally avera
configuration of the system,̂r &, in adjacent planes in the
progression. The rotation and translation of the hyperpl
are performed independently of each other so the free en
of the rotation and translation can be integrated separa
The two integrals are

DAtrans~ t !52E
0

t

^Fi& t8•
dGt8

dt8
dt8, ~18!

where t is the distance along the piecewise linear react
path starting at the initial configuration̂r s1

&, and

DArot~ t !5E
0

t

^~Fi•n̂!R&u8•
dn̂8

dt8
dt8. ~19!

During the optimization, the plane may move back a
forth over the free energy ridge before it converges at
optimal plane. The system then typically slides considera
within the plane as the plane crosses the ridge. These k
of jumps will make the integrands in Eqs.~18! and ~19!
discontinuous and the numerical evaluation of the integ
will have errors because the average position of the sys
changes too much between adjacent planes. This prob
can be circumvented by selecting for the integration o
those planes that are on the same side of the free en
ridge and ignore the ones on the other side. That is, o
planes with an average force with the same sign as the a
age force in plane 1 are included in the integration. Anot
problem that may arise is that some planes may hav
higher free energy than the optimal plane, which we c
check after the optimal plane has been found, using Eqs.~18!
and~19!. This happens when the plane charges up a pote
energy slope before it has rotated sufficiently. Those pla
are likewise discarded. By applying this ‘‘grooming’’ of th
planes in the progression, the free energy integration
worked well in the applications we have made as will
demonstrated in Sec. III.

F. The ratio of configuration integrals in the reactant
region

In order to complete the evaluation of the rate consta
the prefactor needs to be evaluated. The configuration i
gral ratio,QZR

/QR, can be calculated using classical dyna
ics of a single trajectory coupled to a thermal bath~for ex-
ample the velocity Verlet algorithm including stochas
collisions16!. We initially assumeZR is a slice of widthe
around the hyperplaneZR5$rPRun̂ZR•(r2GZR)50%. R
stands for the reactant region,n̂ZR is the normal to the plane
GZR is some reference point in the plane, andr is a configu-
ration of the atoms in the system. Letde represent the con
straint that the system lies within the slice of widthe,
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de5H 1/e if r is in a slice of width e around ZR

0 otherwise.
~20!

The functionde is normalized in the direction of the norma
and, therefore, has the value of 1/e everywhere in the hyper
plane. The ratio can then be evaluated as

QZR

QR 5 lim
e→0

*Rde@ n̂ZR•~r2GZR!#e2VZR~r !/kBTdr

*Re2V~r !/kBTdr
5^de&.

~21!

The thermal average can be evaluated from a classical
jectory. The ensemble averagede is proportional to the frac-
tion of time the trajectory is in the slice. Whenever the cla
sical trajectory crosses the hyperplane, i.e., whenr i is a
configuration on one side of the plane and configurationr i 11

obtained one time step,Dt, later is on the other side of th
plane, the two can be connected by linear interpolation
the time spent in the slice of widthe can be estimated from
the fraction of the line segment that lies within the slice~as
illustrated in Fig. 4!. The time is Dte/u(r i2r i 11)•n̂ZRu.
Here, the vectorr i2r i 11 has been projected onto the norm
n̂ZR to evaluatede , the fraction of time spent in the slic
needs to be multiplied by the value ofde in the slice, 1/e and
then the limite→0 can be taken

QZR

QR 5
1

t tot
lim
e→0

1

e (
Dte

u~r i2r i 11!•n̂ZRu

5
Dt

t tot
(

1

u~r i2r i 11!•n̂ZRu
. ~22!

The sum is over pairs of points,r i and r i 11 , along the dy-
namical trajectory that are on opposite sides of the hyp
plane, ZR. During the simulation, it is possible to dete
when the system crossesZR by noting when the dot produc
n̂ZR•(r i 112GZR) changes sign.

G. Calculation of the factor Šzv z‹

The final contribution to the prefactor,̂uvu&, can be
evaluated by integration,

FIG. 4. Evaluation of the configuration integral ratioQZR
/QR from a clas-

sical trajectory. A hyperplaneZR is placed in the reactant region. The cla
sical trajectory is used to calculate how much time the system spends
slice of widthe aroundZR. The trajectory is assumed to be continuous a
the slice thin enough that configurationsr i 11 and r i can be connected by a
straight line segment. The amount of time the system spends in the sli
proportional to the fraction of the line segmentr i 11 andr i lying in the slice.
The calculation of the ratio is done in terms of the projection onto
normal,e/nZR•(r i 112r i).
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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^uvu&
2

5
1

2

*0
`ve2mv2/2kBTdv

*0
`e2mv2/2kBTdv

5A kBT

2pm
. ~23!

Herem is the effective mass for motion across the dividi
surface in the direction of the normal,

m5(
i

mi~nx
21ny

21nz
2!. ~24!

The indexi runs over all atoms in the system. This equati
for m can be derived by considering the Maxwel
Boltzmann distribution for velocity, illustrated in Fig. 5. Fo
example, in a system of two particles, the velocity in t
direction of a normalized vector,n̂5(n1 ,n2), is given byv
5v1x̂11v2x̂2, where v15n1v, and v25n2v, v being the
magnitude ofv. The probability distribution of velocity in
any direction is proportional toe2mv2/kBT, wherem is the
effective mass for the direction. This distribution is also p

portional to e2(m1v1
2
1m2v2

2)/2kBT5e2(m1n1
2v21m2n2

2v2)/2kBT,
wherem1 andm2 give the mass of the two particles. Com
paring the two equivalent expressions for the velocity dis
bution showsm5n1

2m11n2
2m2 . An extension to higher di-

mensions gives Eq.~24!.

III. APPLICATIONS

The method has been applied to several two-dimensio
systems, both to test and illustrate how the method wo
The method has also been applied to a realistic, multidim
sional system with several hundred degrees of freedom.
of course, most important that the method can be applie
complex, multidimensional systems.

In all calculations of canonical ensemble averages
use a single molecular dynamics trajectory. We simulat
system at a given temperature by applying stochastic c
sions to the trajectory.16

FIG. 5. An illustration of the calculation of the effective massm. Contour
lines of the velocity distribution for coordinates of two particles,x1 andx2

are shown. The concentric circles represent the distribution if the mas
the two particles,m1 andm2 , is the same. The elliptical curves represent t
case whenm2.m1 . The vectorn̂ represents a direction for which on
would like to determine the effective mass. Typically,n̂ is the normal to the
transition state hyperplane.
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A. Saddle points at TÄ0 K

The method can be applied without much computatio
cost atT50 K since there is no need to evaluate a therm
average for each position of the hyperplane. The system
simply sits in a local potential energy minimum within th
hyperplane. After the hyperplane has been moved the sys
is typically not at a minimum and it relaxes to the close
minimum energy configuration. As the hyperplane is push
uphill and rotated against the force acting on it, the hyp
plane will reach the top of and be aligned with the poten
ridge. There the system is at a local minimum within t
hyperplane and a local maximum in the direction of the n
mal to the hyperplane. The system will, therefore, end
sitting at a first order saddle point. However, since the s
tem does not explore the region around the saddle point,
all derivatives of the potential are zero at the saddle po
the orientation of the plane is not well defined in theT
50 K case. In the calculations presented in this section,
system was simulated at a very low temperature,kBT
51027EA, whereEA is the energy of the saddle point wit
respect toR.

Figure 6 shows the hyperplane progression in four d
ferent two-dimensional systems~here the hyperplane reduce
to a line!. The form of the potential function in each case
a LEPS potential coupled to a harmonic potential, with t
addition of some Gaussians in~b!–~d!. The LEPS part of the
potential describes a three atom system where the atom
on a line and the central atom~atom B! can form one bond
either with the atom to the left~atom A! or the atom to the
right ~atom C!. A fourth atom, D, is coupled in a harmoni
way to the central atom, B. The functional form and para
eters are given in Appendix B. The initial guideline for a
vancing the hyperplane is a straight line that connectsR and
P. As the hyperplane moves up the slope, it rotates and e
tually converges to an optimal hyperplane, denoted by ‡

It serves as a good check on the numerical integration
the reversible work to calculate the integral atT50 K be-
cause the integrated reversible work should then equal
potential energy difference between the initial state and
saddle point. The reaction coordinate is the piecewise lin
path connecting the minimum energy configuration of t
system in each hyperplane. The result of the integration
shown in Fig. 7~a!. The integrated reversible work is almo
identical to the potential energy difference, as it should
The integral was evaluated by using the trapezoidal ru
where the average value of the force for two adjacent pla
was calculated and multiplied by the increment in the re
tion coordinate. A higher order integration scheme could g
more accurate integral and allow for a coarser progressio
planes.

The translational and rotational force acting on the h
perplane at each position illustrate how convergence
reached. As shown in Fig. 7~b!, the translational and rota
tional force increase as the plane climbs up the poten
surface and reach a maximum near the inflection point of
potential energy curve. Then, the forces decrease and
come negligible at the converged hyperplane.

of
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 6. Calculation of an optimal hyperplane atT50 K. After convergence
is reached the plane includes a saddle point on the potential energy su
The hyperplane progression for four two-dimensional potentials is sho
~a!–~d!. ZR is the initial plane and the optimized plane is labeled with ‡. T
initial guideline is the straight line connectingR andP. The plane progres-
sion is shown as a series of lines. Not all the planes used in the calcul
are shown. The filled circle in each plane shows the configuration of
system. It is essential for the hyperplane to rotate in order to reach con
gence, but the final orientation of the plane is not well defined because
the minimum energy configuration of the system within the plane
sampled.
Downloaded 21 Nov 2001 to 128.95.128.134. Redistribution subject to A
B. Free energy barriers at finite temperature

The two-dimensional potential surfaceVa shown in Fig.
6~a! was used to calculate the free energy barrier at a t
perature ofkBT50.1EA. The plane progression is shown
Fig. 8~a!. This progression is similar to the one obtained
T50 K @Fig. 6~a!#, except that the optimal dividing surfac
is better aligned with the potential energy ridge in the fin
temperature case. This is due to better sampling of the re
around the saddle point at finite temperature.

It is important to allow the hyperplane to rotate. F
comparison, Fig. 8~b! shows a plane progression where t
orientation is kept fixed. This is the way free energy barri
are often calculated. Figure 8~c! illustrates how the lack of
orientational optimization can affect the calculated free
ergy barrier. Without the rotation, the calculated free ene
barrier is about 25% lower, corresponding to a 20 tim
larger rate than the orientationally optimized transition st
gives.

The prefactor was also evaluated for the transit
shown in Fig. 8~a!. The ratio of the configuration integrals
Q‡/QZR

was found to be 0.76560.005 for Va at kBT
50.1EA. The value of̂ uvu& was found to be 0.399, so th
rate constant is estimated to bekOH-TST5(4.560.2)31027.
For comparison the exact rate calculated using the hype
namics method17 and a flat bias potential18 gave the value
kTST5(4.460.1)31027.19

This system is, in fact, simple enough that harmonic T
gives a very similar value for the rate constantkhTST54.3
31027.

ce.
n,

on
e

er-
ly

FIG. 7. ~a! The integrated reversible work~shown with dots! at T50 K
along the reaction coordinate for the potential energy surface shown in
6~a!. The integration starts from planeZR. The full curve is the potential
energy difference along the same reaction coordinate. The agreemen
tween the two illustrates the accuracy of the integration procedure.~b! The
translational and rotational force acting on the planes in the plane prog
sion shown in Fig. 6~a!.
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However, it is easy to construct a potential surface wh
harmonic TST is not adequate. For example, adding a s
of two-dimensional sinusoidal waves on top of theVa poten-
tial, of the form 0.0025 sin(80x)sin(80y) gives a surface
which is essentially the same asVa but now has small
ripples. Figure 9 shows the slice of the potential surface
lies within the optimal transition state. The ripples strong
effect the harmonic TST estimate of the transition rate,
this is a failure of the harmonic approximation. The rippl
here are small enough that the rate is not significantly
fected. The free energy curve obtained from the revers
work calculation is shown in Fig. 8~c! and is close to the

FIG. 8. ~a! A reversible work calculation at a finite temperature,kBT
50.1EA, for the potential energy surface shown in Fig. 6~a!. The initial
plane isZR and the optimized one is ‡.~b! Same as in~a!, except the
orientation of the plane is not allowed to change, as is often done in
energy calculations.~c! A comparison of the calculated free energy for t
two plane progressions shown in~a! and~b!. This illustrates the importance
of including rotation of the plane. The dashed line shows the result of a
energy calculation when small ripples~a set of sinusoidal functions! have
been added to the potential energy surface. The value of the free ene
not affected significantly but, since the potential surface now has ripples
multiple saddle points in the transition region, as shown in Fig. 9, harmo
TST would fail in this case.
Downloaded 21 Nov 2001 to 128.95.128.134. Redistribution subject to A
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original results, without the ripples. This example illustrat
that the OH-TST calculation can, in principle, be applied
complex systems where the location of the transition s
dividing surface cannot simply be inferred from the locati
of a saddle point on the potential energy surface.

C. Symmetric Eckart barrier

An optimization of the dividing surface for the two
dimensional Eckart barrier has been presented by Maka
and Metiu.6 They carried out a direct calculation of the ra
constant for various dividing surfaces. The potential ene
is given by

VEckart~x,y!5
V0

cosh2S ax

2 D 1
1

2
mv2~y2Cx!2, ~25!

with V050.0156, a53.97, 1
2mv251.0431024, and C

510. A contour plot of the potential is shown in Fig. 10.
Makarov and Metiu tested several dividing surfaces g

ing through (x,y)5(0,0) by varying the orientation of the
dividing surface. The smallest rate was found at an angle
0° with respect to they-axis atkBT50.1EA, parallel to the
potential energy ridge atx50. At higher temperature,kBT
50.3EA, the best dividing surface had a much larger
from the y-axis, about 70°.20 There is a large number o
recrossings of the dividing surface in this system, especi
at the higher temperature. Makarov and Metiu found that
best diving surface is not the one minimizing the number
recrossings.6

We carried out OH-TST calculations, first by constrai
ing the dividing surface to go through~0, 0!, and found op-
timal orientation in good agreement with the results
Makarov and Metiu, both at the low and high temperatu
~1° at low T and 74° at highT!. A full optimization of the
dividing surface, both location and orientation, gave the
sults shown in Fig. 10. Here, the optimal dividing surface h
moved slightly away from (x,y)5(0,0). In this calculation,
the configurationsR andP were chosen to be the minimum

e

e
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FIG. 9. The potential energy within an optimal hyperplanar dividing surfa
for a potential constructed by adding sinusoidal ripples to the potential
face shown in Fig. 8~a!. This potential surface has multiple saddle points
the transition region. The free energy curve obtained by the reversible w
integration is shown in Fig. 8~c!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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energy configurations in a slice of the potential parallel to
x-axis ~there is not a stable minimum energy configurati
on this potential surface!.

At the higher temperature, the average kinetic energ
a considerable portion of the barrier height. The basic
sumptions of TST may not apply in such cases as the tra
tion is not slow. The OH-TST method, nevertheless, c
verges in this case to an optimal dividing surface wh
agrees closely with the dividing surface obtained by dir
rate calculations.

D. Al adatom diffusion on Al „100…

The most important question is how well the OH-TS
algorithm performs in high dimensional problems. We a
plied the method to Al adatom diffusion on a Al~100! sur-
face. The system is simulated as a slab of 6 Al layers with
atoms in each layer. The atoms in the two lowest layers w
kept fixed. An adatom was placed on the surface in
stable, fourfold hollow site. The system therefore consists
201 atoms, or 603 degrees of freedom.

The transition of interest is the diffusion of the adato
on the surface. The simplest mechanism for diffusion i
hop over the bridge site~see Fig. 11!. This was the assume
mechanism until Feibelman carried out density functio
theory ~DFT! calculations of the energetics of various tra
sition mechanisms and found that a two-atom concerted
placement mechanism is lower in energy~see Fig. 11!.21

Both mechanisms result in a diffusion of an adatom on
surface, but the final state of the two transitions is qu
different.

The calculations presented here make use of an em
ded atom method~EAM! potential surface of the Voter–
Chen form.22 The calculated energy barrier for the concert
displacement process is 0.23 eV and 0.37 eV for the hop
quite good agreement with the DFT calculations. The res
of OH-TST calculations atT5210 K are shown in Fig. 12

FIG. 10. Optimal dividing surfaces, corresponding to maximum free ene
for the two-dimensional Eckart barrier at low (kBT50.1EA) and high
(kBT50.3EA) temperature. The plane leading to fewest recrossings at
lower temperature is shown with a thick dashed line~Refs. 6, 20! and is
clearly different from the plane with maximum free energy.
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Results of two calculations of the free energy barrier for
concerted process are given, the only difference being
parameter determining the moment of inertia of the hyp
plane and the maximum angle of rotation in a single st
These values were 0.00473 and 5° in one case, and 0.0
and 1° in the other. The free energy rises faster in the c
where the hyperplane rotates faster. The difference in
calculated free energy barrier is less than the error bar a
ciated with the numerical calculation.

Figure 12 also shows the results of a calculation wh
the initial guideline was drawn from the initial state to th
final state of the hop mechanism. However, during the pl
progression the hyperplane rotated enough that it conve
on an optimal hyperplanar dividing surface for the concer
displacement process. This was verified by minimizing co
figurations from several locations within the transition sta

y,

e

FIG. 11. Two different diffusion mechanisms for an Al adatom on
Al ~100! surface, the hop and two-atom concerted displacement. The
certed displacement~‘‘exchange’’! process has lower activation energy. No
that the final state is quite different in the two processes.

FIG. 12. Free energy curves atT5210 K for the hop and concerted dis
placement~‘‘exchange’’! mechanism of Al adatom diffusion~see Fig. 11!.
The free energy barrier for the concerted displacement mechanism is f
to be 0.16 eV while the hop has free energy barrier of 0.33 eV. Two ca
lations of the free energy barrier for the concerted displacement proces
shown. The dashed lines correspond to calculations with three times sm
moment of inertia than the solid lines. The dashed line farthest to the
shows results of calculation where the guiding line is that of the hop mec
nism, but the hyperplane converges to the transition state of the conc
displacement mechanism, which has lower free energy barrier. When
moment of inertia is too large, the plane is unable to rotate enough to
the concerted displacement. This demonstrates how OH-TST can revea
optimal transition mechanism even when the method is started up wi
guideline corresponding a different, less than optimal mechanism.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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hyperplane. 38% of the trajectories ended up in the final s
for the concerted displacement, and 62% trajectories en
up in the initial state. No trajectory ended up in the final st
for hop. This illustrates how the orientational optimizatio
makes the method flexible enough to be able to identify
unexpected, optimal mechanism even when the calculatio
started up with a guideline for a different mechanism.

Figure 13 shows a schematic explanation of how t
occurs. The plane progression is represented in a t
dimensional space. This two-dimensional space is span
by the vectorsPHop2R andPExch2R, whereR is the mini-
mum energy configuration in the reactant region,PHop is the
minimum energy configuration in the product region of t
hop, andPExch is the minimum energy configuration in th
product region of the concerted displacement. The projec
of PExch2R is chosen to lie on thex-axis pointing in the
positive direction. The angle betweenPHop2R and PExch

2R is arccos ((PExch2R)•(PHop2R)/uPExch2RuuPHop

2Ru)569°. The projections of the hyperplanes in the p
gression are given by the lines in Fig. 13, as shown in A
pendix C. At first, the plane progression heads towards
free energy barrier for the hop mechanism. At some point
system in the plane has enough energy to escape from
valley that leads to the hop into the valley leading to t
concerted displacement.

When the moment of inertia of the hyperplane is
creased enough, to 0.154 from 0.00220 in the calcula
described above, the rotation is limited enough that the O
TST calculation converges on a transition state for the h
This was verified by minimizing several images of the s
tem within the transition state hyperplane. 41% of the ima

FIG. 13. An illustration of how OH-TST locates a free energy barrier for
concerted displacement mechanism when the calculation is started out
a guideline tailored to the hop mechanism. The filled circles represent m
mum energy configurations in the reactant region~R!, the product region for
the hop (PHop), and the product region for the concerted displacem
(PExch). The angle betweenPHop2R and PExch2R and their relative mag-
nitudes in the figure are the same as in the actual system. The hyperpla
the progression are projected onto the two-dimensional space spann
the two vectorsPHop2R andPExch2R. The projection of each hyperplane
calculated by determining the interception point of the plane with lin
throughR and alongPHop2R andPExch2R. The optimal transition state is
labeled with ‡. Not all planes in the progression are shown.
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ended up in the final state for hop, and 59% images ende
in the initial state. No image ended up in the final state
concerted displacement.

The OH-TST calculations gave a free energy barrier
the concerted displacement of 0.16 eV and a barrier of 0
eV for the hop. The entropic effects within the hyperpla
are larger for the concerted displacement, reducing the
rier by 30% as compared with 11% for the hop. The tran
tion states are quite different, and apparently the transi
state for the concerted displacement, where the adatom
been driven into the surface, has higher entropy.

The direction of the hyperplane normal at the transiti
state represents an optimal choice for the reaction coordi
for the transition, in that region of configuration space, sin
the hyperplane is a tangent surface to the full dividing s
face. The normal can be written asn̂5$n̂1 ,n̂2 ,...,n̂N%, where
eachn̂i is a three-dimensional vector corresponding to ea
atom andN is the number of atoms in the system. Atom
with the largestn̂i are the atoms that contribute most to t
reaction coordinate. This can, for example be used to c
acterize the hop and concerted displacement mechanism
Al diffusion. Giving only the magnitude of the displaceme
of each atom in a formati (un̂i u), with i as the atom numbe
~see Fig. 14!, the concerted displacement mechanism ha
reaction coordinate$1~0.667!, 8~0.592!, 10~0.108!, 6~0.083!,
11~0.073!, 5~0.071!, 9~0.070!% while the hop mechanism is
$1~0.973!, 8~0.078!, 10~0.078!, 11~0.046!, 13~0.046!%. The
processes are shown in Fig. 11.

The thermal sampling within the hyperplane was
duced by making use of the fourfold symmetry in all the
diffusion calculations as described in Sec. II D. Without t
symmetry constraint, the OH-TST calculations converged
a hyperplane that resembled an average plane for two s
metrically equivalent concerted displacement processes.

IV. SUMMARY

The method presented here, OH-TST, can be used to
in a systematic way the optimal hyperplanar dividing surfa
for a TST estimate of a rate constant. The optimization
naturally built into the reversible work evaluation of the fre
energy barrier. The method can, in principle, be applied
large and complex systems. AtT50 K the method locates
saddle points. At finite temperature, the method can find

ith
i-

t

s in
by

s

FIG. 14. Al adatom in a stable position on the Al~100! surface~the initial
state for diffusion!. The atoms are numbered to aid the discussion of
reaction coordinates~see text!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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optimal dividing surface for highly anharmonic systems,
volving many saddle points, where the harmonic approxim
tion TST is not applicable. The method can also work wh
entropic effects dominate and the optimal dividing surface
not near a saddle point, as was illustrated with the Eck
barrier test problem.

OH-TST may be used to predict mechanisms of sl
transitions. An analysis of Al adatom diffusion on Al~100!
surface showed that the method is able to find a mechan
with lower free energy barrier than the one used to start
calculation. A limitation of OH-TST in that study was th
hyperplanar representation of the dividing surface wh
breaks down at temperatures higher than 210 K because
system can escape away from the bottleneck region e
though it is confined within the hyperplane. A possible so
tion to this problem is to construct a piecewise hyperpla
dividing surface. When the system visits a boundary of t
hyperplanes it is either reflected back and kept in the sa
hyperplane or it is reflected into the hyperplane on the ot
side of the boundary. This is illustrated in Fig. 1. Hyperpla
h2 is used to represent the dividing surface betweenR and
P5 . At some temperature, the system confined toh2 will be
able to escape from the bottleneck region connectingR and
P5 into product regionP4 . By using two hyperplanes,h2

and h3 , to represent the dividing surface,h2 in the region
betweenR and P5 andh3 in the region betweenR and P4 ,
this problem could be avoided. Another possibility is to ge
eralize the method to curved dividing surfaces.
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APPENDIX A

The orientation of the hyperplane is adjusted at each
in the plane progression. The normal is rotated in a tw
dimensional plane, regardless of the dimensionality of
system.9 Consider an arbitraryN-dimensional vectory. As-
sume thaty is rotated about an angleu. For pure rotation, we
can choose a basis set fory such that the rotation occurs in
two-dimensional subspace of theN-dimensional space. In
other words, the rotation affects only two coordinates ofy in
this basis. The rotation is perpendicular to the remaining
ordinates. Let us assume thaty is rotated in the
(b1 ,b2)-plane, as illustrated in Fig. 15~a!.

The projection ofy onto the (b1 ,b2)-plane is the vector
yp . The rotation can be accomplished by adding a vectorDy
~Dy is perpendicular toyp! to yp . The resulting vector,yr ,
must be scaled such thatuyr u5uypu. Finally yr is added to the
part of y that was not projected onto the (b1 ,b2)-plane, to
get the rotated image ofy.

Figure 15~b! illustrates how the normal of a hyperplan
is rotated during the plane progression. The normal com
nent of the force,Fi5F•n̂, acts on the hyperplane at a poi
located atR from the turning point. This causes a rotation
Downloaded 21 Nov 2001 to 128.95.128.134. Redistribution subject to A
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force,t, which acts to rotate the normal of the hyperplane
the plane formed by the arm,R, and the normal,n̂. The
magnitude of the rotational force isutu5uRuuFiu and the di-
rection oft is such as to oppose the force acting on the pla
~thus rotating the plane to higher free energy!. This gives

t5
R

uRu
uRuuFiusign~ n̂•F!5R~ n̂•F!. ~A1!

APPENDIX B

The two-dimensional potentials used in the test calcu
tions shown in Figs. 6~a!–6~d! are based on a LEPS plu
harmonic oscillator potential,VLEPSpHO, shown in Fig. 6~a!.
The LEPS potential describes the interaction of three ato
A, B, and C where only one ‘‘bond’’ can be formed,23

VLEPS~r AB ,r BC!5
QAB

11a
1

QBC

11b
1

QAC

11c
2F JAB

2

~11a!2

1
JBC

2

~11b!2 1
JAC

2

~11c!2

2
JABJBC

~11a!~11b!
2

JBCJAC

~11b!~11c!

2
JABJAC

~11a!~11c!
G1/2

, ~B1!

where theQ functions represent Coulomb interactions b
tween the electron clouds and the nuclei and theJ functions
represent the quantum mechanical exchange interacti
These functions are

Q~r !5
d

2 S 3

2
e22a~r 2r 0!2e2a~r 2r 0!D , ~B2!

and

J~r !5
d

4
~e22a~r 2r 0!26e2a~r 2r 0!!. ~B3!

The parameters used in the calculations presented here
a5c50.05, b50.80, r 0,AB5r 0,BC5r 0,AC50.742, aAB

5aBC5aAC51.942, dAB5dBC54.746, and dAC53.445.
The LEPS potential is used here in such a way that the
sition of the end atoms A and C is fixed and only atom B
allowed to move.

FIG. 15. An illustration of the calculation of the rotation of the hyperplan
~a! The rotation of the normal occurs in a two dimensional plane spanne
basis vectorsb1 andb2 . ~b! The two basis vectors can be taken to be a u
vector in the direction of the armR and the plane’s normal,n̂. The vectort
gives the change in the direction of the normal. The plane rotates agains
rotational force acting on it by addingt5R(n̂•F) to the normal.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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A second degree of freedom is added to the LEPS
tential. This can be interpreted as a fourth atom, D, coup
to atom B in a harmonic way,

VLEPSpHO~x,y!5VLEPS~x,r AC2x!

12kc~x2~r AC/22y/c!!2, ~B4!

wherekc50.2025,r AC53.742, andc51.154. A contour plot
of this potential is shown in Fig. 6~a!.

The potentials shown in Figs. 6~b!–6~d! were con-
structed by addingV8(x,y) to theVLEPSpHO(x,y) potential,

Vi~x,y!5VLEPSpHO~x,y!1Vi8~x,y!, ~B5!

wherei 5b,c,d. The form of theV8(x,y) functions was

Vb8~x,y!51.5G~x;2.02083,0.1!G~y;20.172881,0.35!,
~B6!

Vc8~x,y!52~G~x;1.6,0.3!E~y;22.0,0.5!

1G~x;2.4,0.3!E~y;2.0,20.5!!, ~B7!

Vd8~x,y!50.3G~x;C~y!,0,1!, ~B8!

where the G, E, and C functions are defined as

G~r ;r 0 ,s r !5e2~r 2r 0!2/2sr
2
, ~B9!

E~r ;r 0 ,a r !5ear ~r 2r 0!, ~B10!

C~y!52.0208310.1 cos@10p~y10.172881!#. ~B11!

The coordinate (x,y)5(2.020 83,20.172 881) correspond
to the first order saddle point on theVLEPSpHOsurface.

APPENDIX C

In Sec. III D the hyperplanes in the plane progress
leading to the free energy barrier for the concerted displa
ment process were projected onto a two-dimensional sp
spanned by the vectorsPHop2R and PExch2R. Here it is
shown that this projection gives a line for each of the hyp
planes.

A point r in this two-dimensional coordinate system c
be expressed by r5ap̂Hop1bp̂Exch with p̂Hop5PHop

2RuPHop2Ru, p̂Exch5PExch2RuPExch2Ru, and a and b
some real numbers. Therefore, the set of all points in
two-dimensional system is given by$rPR3Nuap̂Hop

1bp̂Exch5r;a,bPR%. All points r in a hyperplane satisfy
the conditionn̂•(G2r )50, with n̂ the plane’s normal andG
a reference point in the plane. Thus the set of all points
hyperplane is given by$rPR3Nun̂•(G2r )50%. From the
OH-TST calculation we haven̂ andG for all the planes in the
progression. The hyperplanes in the plane progression ha
single interception point with each of the two linesl Hop:$a
PRuR1ap̂Hop% and l Exch:$aPRuR1ap̂Exch%. This is evi-
dent by noting thatn̂•(G2r )50 changes sign when goin
along either linel Hop or l Exch.

We now show that the projection of a hyperplane on
the two-dimensional space spanned byPHop2R and PExch

2R is indeed the line through the two interception points
the plane with the linesl Hop andl Exch. The problem is to find
the intersect between the two sets,$rPR3Nun̂•(G2r )50%
and $rPR3Nuap̂Hop1bp̂Exch5r;a,bPR%. Assuming the
Downloaded 21 Nov 2001 to 128.95.128.134. Redistribution subject to A
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hyperplane’s normal is not perpendicular to bothp̂Hop and
p̂Exch, the space spanned by the two-dimensional coordin
system cannot be a subset of the hyperplane. Since the i
cepts are points on the linesl Hop and l Exch, given by, say,
a5a1 anda5a2 respectively, we can write

n̂•~G2R2a1p̂Hop!50, ~C1!

and

n̂•~G2R2a2p̂Exch!50. ~C2!

Equations~38! and ~39! can then be multiplied by rea
numbersg1 andg2 and added to get

n̂•S G2R2
g1

g11g2
a1p̂Hop2

g2

g11g2
a2p̂ExchD50,

~C3!

Replacing the two parameters by a single parameteg
5g2 /(g11g2), this equation becomes

n̂•~G2~R1a1p̂Hop1g~a2p̂Exch2a1p̂Hop!!!50. ~C4!

This equation shows that the intercept of the two sets ab
is a one-dimensional line going through the two intercept
points a1p̂Hop and a2p̂Exch. Therefore the two-dimensiona
representation of the planes in the plane progression is g
by the set of lines shown in Fig. 13.
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