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Abstract

A theory for calculating rates of transitions in quantum systems is presented and applied to desorption of H from a2
Ž .Cu 110 surface. The quantum transition state is defined as a conical dividing surface in the space of closed Feynman paths

and a ‘reaction coordinate’ in this extended space is used to parametrize a reversible work evaluation of the free energy
barrier. In a low temperature, harmonic limit the theory reduces to instanton theory. Above the cross-over temperature for
tunneling, the theory reduces to the centroid density approximation and in the classical limit, variational classical transition
state theory is recovered. q 1997 Elsevier Science B.V.

Ž .Transition state theory TST is well established
and widely used for calculating rates of slow transi-

w xtions in classical systems 1,2 . It gives an approxi-
mation which frequently is quite accurate and it,
furthermore, provides a viable computational proce-
dure for obtaining the exact rate constant via dynam-
ical corrections which require only short time trajec-
tories starting at the transtition state. For a system
with N degrees of freedom, the transition state is a
Ny1 dimensional dividing surface separating reac-
tants and products. The accuracy of the TST approxi-
mation depends strongly on the choice of the divid-
ing surface. For classical systems, it can be shown
that TST always gives an overstimate of the rate and
this provides a variational principle for optimizing

w xthe location of the dividing surface 2 . Basically,
TST transforms the dynamical problem into a statis-
tical one by approximating the transition rate as
being proportional to the probability of finding the
system in a transition state. A good approximation to
the rate constant can be obtained from TST if the

transition state is chosen to be a dividing surface
representing a tight bottleneck for advancement of
the system from reactants to products.

The challenge is to generalize TST to transitions
in quantum systems. Several experimentally mea-
sured transition rates show temperature dependence
where below a cross-over temperature the effective

w xactivation energy is significantly reduced 3 . This is
characteristic of the onset of quantum behaviour
where thermally assisted tunneling becomes the
dominant mechanism. Several versions of quantum

w xTST have been proposed 2 . The most widely used
Ž .formulation is based on statistical or imaginary time

Feynman path integrals where the partition function
w xof a quantum system is given by 4

yS w qŽt .xr "EQs e DD q t . 1Ž . Ž .H
Ž .Throughout, q represents an N-dimensional vector.
Here S is the Euclidean action, S sHb "Hdt withE E 0

H being the Hamiltonian. For discretized paths de-

0009-2614r97r$17.00 q 1997 Elsevier Science B.V. All rights reserved.
Ž .PII S0009-2614 97 00886-5



( )G. Mills et al.rChemical Physics Letters 278 1997 91–9692

scribed by P configurations of the system, the action
can be approximated as

2P m q yqjq1 j
S q sDt qV q , 2Ž . Ž . Ž .ÝE j2 Dtjs1

Žwhere Dtsb "rP boldface type is used here for
.NP-dimensional vectors . This leads to a mathemati-

cal analogy between the partition function of a quan-
tum particle and the classical partition function of a

Ž .string of P ‘images’ or replicas of the system
connected by springs with a temperature dependent
spring constant. The path integral formulation pro-
vides a practical method for evaluating the quantum
statistical mechanics, but the key question is how to
define the transition state. In previous theories, the

Žtransition state has been defined in terms of a Ny
.1 -dimensional dividing surface in the classical coor-

w xdinate space 2 . In particular, in the centroid density
w xmethod, proposed by Gillan 5 and later generalized

w xby others 6–10 , the transition state constraint is
applied to the average, or centroid, of the Feynman

Ž . Ž .paths q s 1rb " Hq t dt . This was tested and˜0

found to work well for transitions involving symmet-
w xric barriers 5–7,11 . The centroid constraint, how-

ever, does not work well for asymmetric transitions
w xat low temperature 12,13 . We present an example

of that below. We also present a generalized path
integral based quantum TST where the transition

Žstate is defined in a more general way, as a NPy
.1 -dimensional cone in the space of all closed Feyn-

man paths with P images. This theory represents a
natural, anharmonic generalization of the so-called

Ž .‘instanton theory’ see below . A methodology is
described for evaluating the free energy barrier in
this higher dimensional space, which we will refer to
as ‘action-space’. The technique involves evaluating
the reversible work required to shift the system
confined to a dividing surface cone from the reac-
tants towards products. We refer to the method as
reversible action-space work quantum transition state

Ž .theory RAW-QTST .
The statistical weight of Feynman paths is given

by the Euclidean action and topology of the action
w xsurface is of central importance 12 . Fig. 1 shows

the action surface for a one-dimensional asymmetric
w xEckart barrier 13 and paths described by two Fourier
Ž . Ž .components, x t sx qx sin 2ptrb " . At high0 1

Fig. 1. Contour plots of the Euclidean action, S , for an asymmet-E
Žric Eckart barrier exoergic transition by 0.19 eV and barrier

.height 0.25 eV in the space of closed paths represented by two
Fourier components, x and x . The dotted line at x s0 repre-0 1 1

Ž .sents the collapsed, classical paths. a T s300 K, above the
cross-over temperature. As the images spread apart, the action
increases. The MAP therefore only includes collapsed paths and

Ž .reduces to the MEP. b T s50 K, below the cross-over tempera-
Ž .ture. A local maximum in S q develops on the x s0 line atE 1

the potential barrier. The projection of the MAP onto the two-di-
mensional space is shown with a dashed line. The MAP now
includes delocalized paths, a signature of tunneling. The dividing
surface with maximal action is indicated by thick, solid lines.

temperature, the action increases as the Feynman
Ž .paths are opened x /0 . But, below a certain1

Ž .cross-over temperature, T 275 K in this case , thec

topology changes as a local maximum of action
appears at x s0 in the barrier region. Then, the1

minimal action in the barrier region is obtained with
open, delocalized paths and saddle points appear off

Ž .the ‘classical’, collapsed path x s0 axis. A sym-1

metry in the action surface corresponding to relabel-
ing of images is evident in Fig. 1b where two
symmetrically equivalent saddle points appear. In
general, P saddle points form and, in the limit of
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Žcontinuous representation of the Feynman paths P
.™` , there is a continuum of saddle points.

An important concept in classical TST is the
Ž .minimum energy path MEP connecting reactants

and products. For a quantum system, we generalize
Ž . Žthis to the minimum action path MAP see Fig.

.1b . Above the cross-over temperature, the MAP
reduces to the MEP. We denote the MAP with Gs

where s is a scalar variable parametrizing progres-
sion along the MAP. We will choose s as ‘reaction
coordinate’, a parameter that shifts the system from
reactants to products. This choice is particularly
good for numerical sampling since the probability
density of Feynman paths is largest at the MAP.
Also, we will choose a dividing surface that has

X 5 X 5normal vector tangent to the MAP, n 'G r Gˆ s s s
Ž .prime denotes drd s . This ensures that displace-
ment along the unstable mode at saddle points is not
included in the dividing surface. A hyperplanar reac-
tion coordinate constraint on the dividing surface can

Ž Ž ..be written as d 'd n P qyG .ˆr p s s
Ž . Ž .Since the Feynman paths, q t , are closed, q t

Ž .sq b "qt , and the Euclidean action is invariant
w Ž .x w Žunder imaginary time translation, S q t sS q tE E

.xq t . The origin of the imaginary time is arbitrary.
The set of all Feynman paths equivalent by this
symmetry form a ‘circle’ in action-space. We, there-
fore, construct a dividing surface from a sequence of
hyperplanes defined by the imaginary time transla-
tion of n and G . This family of hyperplanes en-ˆ s s

velops a cone with an axis consisting of all collapsed
paths. The time translational symmetry of the system
is retained in the conical dividing surface and this
‘zero mode’ can be integrated out separately. This
facilitates numerical sampling of the Feynman paths.
The contribution of the zero mode to the partition

locŽ .function is Q q ' b " z Pq where z 'ˆ ˙ ˆŽ .0 s s
˙ ˙5 5G r G and qsdqrdt . The cone dividing surface˙s s

partition function, Q , can then be evaluated froms

yS EŽq .r " loc w xQ s e Q q d d DDq t , 3Ž . Ž .Hs 0 r p 0

Ž Ž ..where d ' d z P q y G . The constraint,ˆ0 s s
loc Ž .Q d d , specifies a NPy2 -dimensional wedge0 r p 0

of the dividing surface cone.
The transition state in our theory is chosen to be

the cone corresponding to the tightest statistical bot-

tleneck, i.e. the cone with maximum free energy 1.
The calculation is carried out in terms of the re-
versible work of shifting the dividing surface from
the reactant region towards products, using the reac-
tion coordinate, s, to parametrize the progression.
We choose the transition state to be the cone, s‡,
which gives a maximum in the free energy function
FF . To simplify the notation, we define an effectives

potential for the Feynman paths as

V q 'yk T ln eyS EŽq .r "Q loc q 4Ž . Ž . Ž .Ž .eff B 0

Ž .and effective force F q sy= V . The changeeff q eff

in the free energy, FF
X, as the dividing surface iss

shifted is

z
X
Pqˆ ˙sX XF P n y n n qz z P qyG y .Ž .ˆ ˆ ˆ ˆ ˆŽ .½ 5eff s s s s s s¦ ;b z Pqˆ ˙s

5Ž .

The first term is due to translation of the dividing
surface along the reaction coordinate. The remaining
terms account for rotation in the n and z direc-s s

tions. In the numerical sampling, we start with the
path qsG and then run classical dynamics simula-s

tions subject to the constraint d d and the statisti-r p 0

cal weight function eyS E r "Q loc. The weight function0

automatically imposes the constraint Q loc )0 by0

making the ‘phantom’ force, = y"lnQ loc q ,Ž .Ž .q 0

which points towards paths with larger Q loc, infinite0

wherever Q loc s0. The free energy barrier is D FFs0
‡ X Ž . ‡H FF d ssy 1rb lnQ rQ and the rate constantR s s sR

is given by

QR kQTST sn eyb D FF , 6Ž .I

where n is a weakly temperature dependent prefac-
tor, given below, and QR 'Q rQ .I R sR

In order to derive a rate, we expand the dividing
surface free energy around s‡ up to second order in
s. This represents an unstable state, but a total free

Ž . Ž Ž ..energy, exp ybFF sHexp ybFF s d s, can be
evaluated by rotating the integration contour to the

1 This gives a systematic way of defining the transition state
and ensures that instanton theory is recovered at low temperature
and variational classical transition state theory at high tempera-
ture. However, this choice is not as well justified as in the
classical case where a variational principle has been established.
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imaginary s axis. The decay rate of this state is
directly related to imaginary part of the free energy
w x14 . This ‘ImF’ formalism has been shown to work
well both for classical and low temperature quantum

w xsystems 3,14,16,17 and can be related to the flux-
flux correlation function formulation of the rate
w x8,18 . The resulting prefactor for RAW-QTST is

1
XX ‡< <(ns 2prb FF s f , 7Ž . Ž .

b "

where f is the Affleck switching factor, fs1 for
w xT-T and fsT rT for T)T 17 . With thisc c c

prefactor, RAW-QTST becomes variational classical
w xtransition state theory 2 in high temperature, classi-

w xcal limit 18 .
At sufficiently low temperature, the statistical

sampling of Feynman paths is dominated by regions
Ž .of small S . A harmonic approximation to S qE E

obtained by expanding around the MAP can then be
used. The saddle point of the action surface, i.e. the
maximum of the action along the MAP, becomes the
bottleneck. This is analogous to the situation in
classical systems where the saddle point of the po-
tential energy surface becomes the bottleneck at low
temperature. In fact, TST is most often applied within
the harmonic approximation where a normal mode
expansion around the saddle point and the reactant
minimum is used to evaluate the partition functions
w x19 . A quantum theory based on an analogous har-
monic expansion of the action has been developed.
The dominant, exponential variation of the rate with
temperature is given by the action at the saddle point
while the prefactor is given by the eigenvalues of the
normal modes, except the zero mode which has to be
treated separately. The saddle point Feynman path is
often referred to as the ‘instanton’ and the rate

Ž w xtheory as ‘instanton theory’ see Ref. 3 , and refer-
.ences therein . Being a stationary point of the action,

the instanton is typically described in terms of a
classical trajectory on the inverted potential. Instan-
ton theory, which is known to give accurate rate
estimates at low temperature, is naturally obtained
from RAW-QTST by taking the harmonic limit. The
high temperature limit of RAW-QTST is variational
classical transition state theory, which is known to
work well for classical systems. At all temperatures,
RAW-QTST treats tunneling on an equal footing

Fig. 2. The calculated transition rate for the asymmetric Eckart
barrier. At low temperature, below 100 K, the results of the

Ž .variational centroid density approximation VCD-QTST show an
unphysical increase in the rate as temperature is reduced. At high
temperatures, near the cross-over temperature T s273 K, thec

instanton results overestimate the rate. The RAW-QTST calcula-
tions, which include full anharmonicity, agree well with the exact
results and coincide with the centroid density results at high
temperature and are close to the harmonic, instanton limit at low
temperature.

with over-the-barrier transitions and includes full
anharmonic effects in both the transition and reactant
states. Above T , where tunneling is unimportant,c

our theory reduces to variational centroid density
w xtheory 9 , but below T the centroid variable doesc

not play any special role in either our theory or in
our simulation methodology.

We now discuss an application of the theory to a
one-dimensional Eckart test problem. The rate calcu-
lated by the RAW-QTST is found to give good
agreement with the exact rate over the whole temper-
ature range as shown in Fig. 2. At just below the
cross-over temperature, the centroid density theory
gives similar results. But, at lower temperature the
results of the centroid density calculation become
unphysical, the calculated rate constant increases as

Žtemperature is further reduced even though the di-
viding surface is adjusted at each temperature to

.minimize the rate . The problem is that the dividing
surface defined in terms of the centroid coordinate
becomes too weak a constraint and the system can
avoid the bottleneck region by sliding down towards
reactants or products along the unstable mode at the

Žsaddle point the centroid density dividing surface, as
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any dividing surface defined only in terms of the N
classical coordinates, corresponds to a vertical line in

. w xFig. 1 12 . On the other hand, instanton theory
gives very good results at low temperature, but
overestimates the rate at high temperature, as can be

w xexpected 3 .
We finally turn to an application of RAW-QTST

to a very large system, the associative desorption of
Ž .H from a Cu 110 surface, a transition involving2

two quantum particles. In addition to the H atoms,
we include eight of the Cu atoms quantum mechani-

Ž .cally with Ps25 those nearest to the H atoms and
208 Cu atoms classically in a six layer slab with
movable atoms in the top three layers. The empirical,
many-body interaction potential has been described

w xpreviously 10 . The desorption is exoergic by 0.17
eV with a potential barrier of 0.52 eV. The MAP
was obtained by forming an ‘elastic band’ formed by
a sequence of closed Feynman paths connected by
elastic springs and then minimizing the total action
plus spring energy using a ‘nudging’ algorithm sub-

w xject to fixed end-point constraints 10,18 . Fig. 3
shows snapshots from the MAP for desorption, in
particular the instanton, the Feynman path of maxi-
mum action. Our MAP finding procedure is, in fact,
an efficient way of finding instantons in large sys-
tems. The cross-over temperature is found to be at
T s280 K. While the calculated free energy barrierc

is 0.46 eV at 300 K, it drops to 0.34 eV at 100 K and
to 0.18 eV at 50 K due to tunneling. The calculation
illustrates that RAW-QTST is applicable to large
systems with several quantum as well as classical
degrees of freedom.
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