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Within the harmonic approximation to transition state theory, the biggest challenge involved in
finding the mechanism or rate of transitions is the location of the relevant saddle points on the
multidimensional potential energy surface. The saddle point search is particularly challenging when
the final state of the transition is not specified. In this article we report on a comparison of several
methods for locating saddle points under these conditions and compare, in particular, the
well-established rational function optimization~RFO! methods using either exact or approximate
Hessians with the more recently proposed minimum mode following methods where only the
minimum eigenvalue mode is found, either by the dimer or the Lanczos method. A test problem
involving transitions in a seven-atom Pt island on a Pt~111! surface using a simple Morse pairwise
potential function is used and the number of degrees of freedom varied by varying the number of
movable atoms. In the full system, 175 atoms can move so 525 degrees of freedom need to be
optimized to find the saddle points. For testing purposes, we have also restricted the number of
movable atoms to 7 and 1. Our results indicate that if attempting to make a map of all relevant
saddle points for a large system~as would be necessary when simulating the long time scale
evolution of a thermal system! the minimum mode following methods are preferred. The minimum
mode following methods are also more efficient when searching for the lowest saddle points in a
large system, and if the force can be obtained cheaply. However, if only the lowest saddle points are
sought and the calculation of the force is expensive but a good approximation for the Hessian at the
starting position of the search can be obtained at low cost, then the RFO approaches employing an
approximate Hessian represent the preferred choice. For small and medium sized systems where the
force is expensive to calculate, the RFO approaches employing an approximate Hessian is also the
more efficient, but when the force and Hessian can be obtained cheaply and only the lowest saddle
points are sought the RFO approach using an exact Hessian is the better choice. These conclusions
have been reached based on a comparison of the total computational effort needed to find the saddle
points and the number of saddle points found for each of the methods. The RFO methods do not
perform very well with respect to the latter aspect, but starting the searches further away from the
initial minimum or using the hybrid RFO version presented here improves this behavior
considerably in most cases. ©2004 American Institute of Physics.@DOI: 10.1063/1.1809574#
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I. INTRODUCTION

Within the harmonic approximation to transition sta
theory ~whether used explicitly or implicitly!, finding the
mechanism or rate of transition for a chemical reaction or
the diffusion of one or more atoms on a surface or in a b
system, requires the location of saddle points on the pote
energy surface~PES! governing the transition. In these cas
the transition rates are largely determined by the reg
around the saddle points and their energy difference with
starting minimum. It is therefore not surprising that a lar
9770021-9606/2004/121(20)/9776/17/$22.00
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number of studies have focused on developing or refin
methods for locating saddle points on PESs~see, e.g., Refs
1–27 or references found in the reviews Refs. 28 and 2!.
However, in many of these methods it is assumed tha
reasonable guess for the saddle point can be made and/o
the reaction proceeds to a known final state. If one is look
for saddle points describing yet to be discovered reac
mechanisms or one would like to map out as many sad
points as possible irrespectively of the final states, th
methods will not suffice.
An illustration of the importance of having methods that
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can be used to systematically walk from a given minimu
towards saddle points, without assuming any knowledge
the final states, is the discovery by Feibelman in 1990 tha
Al atom does not diffuse on the Al~100! surface by repeated
hops from one site to another, as had been previously
sumed, but rather by a concerted displacement of
atoms.30 In chemistry, there are many reactions where
mechanism and reaction intermediates are unknown, w
could in principle be tackled using transition state theo
Examples include the photo-oxidation of water on TiO2 ,31,32

which is relevant in the clean production of hydrogen, t
conversion of NaAlH4 to Na3AlH6 ,33 which is relevant to
hydrogen storage, and several reactions important
biochemistry.34–39 The number of methods currently ava
able allowing one to walk from a minimum to a saddle po
without any knowledge of the final state are limited, and,
the best of our knowledge, a systematic comparison of s
methods has not been reported. The goal of the present s
is to provide such a comparison.

Many of the traditional methods used within the che
istry community that are able to start from a minimum a
converge on a saddle point without using any knowledge
the final state are variations on the pioneering efforts of C
jan and Miller1 and Simonset al.3,5 We have investigated th
performance of some of these modified Newton-Raphson
proaches~we will refer to them as all-mode following meth
ods!, which are the rational function optimization metho
using either exact or approximate Hessians~the second de-
rivative matrix of the potential energy with respect to t
nuclear coordinates!. More recently, a different approach ha
been proposed where only the minimum eigenvalue mod
required. Rather than constructing the full Hessian ma
and diagonalizing it, only the minimum mode is found.
this study we will focus on two representatives of what
will refer to as minimum mode following methods, th
dimer17 and Lanczos methods.19 Other methods could also b
investigated, such as various preconditioners24,40or modified
eigenvector following methods,16 but our intention is to pro-
vide a comparison between two main classes of saddle p
search methods and this goal can be reached by consid
representative members of each class. An important facto
determining which method is the more successful is the n
ber of force evaluations and geometry steps needed to r
the saddle points. Also the ability of the methods to disco
as many saddle points as possible might play an impor
role. The computational effort per relevant saddle po
found will eventually decide which method will be the pr
ferred one. In this study all these aspects will be discus
and the results might serve as a basis for further meth
ological improvements.

All our tests have been performed on a model syst
involving transitions in a seven-atom Pt island on a Pt~111!
surface using a simple Morse pairwise potential functi
This test system was previously used to study the efficie
of various methods which rely on knowledge of both t
initial and final state.28 A relatively simple model system i
chosen in these studies to make it easy for others to re
duce the results, apply other methods to the same sys
and to allow for a rather extensive study including three d
Downloaded 30 Dec 2004 to 128.95.104.66. Redistribution subject to AIP
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ferent system sizes. In the full system, 175 atoms can m
so 525 degrees of freedom need to be optimized to find
saddle points. In the medium sized system, only the se
atoms of the island are free to move~21 degrees of freedom!.
In the small system, only one of these seven atoms can m
~three degrees of freedom!. Even though the model interac
tions are of a simple Morse form, the resulting PESs desc
a wide variety of realistic transition mechanisms and prov
challenging tasks for the PES walkers.

The outline of the paper is the following: In Sec. II th
different methods considered are described. This is follow
by a short description of the model PESs in Sec. III and
results and a detailed discussion of them are given in Sec
Conclusions are presented in Sec. V.

II. THE POTENTIAL ENERGY SURFACE WALKERS

All methods described below rely on a local approxim
tion to the PES using information about the gradientg and
the exact or approximated Hessian matrixH at the current
configuration of the system,xl . Using all or parts of the
available information a step vector,Dxl , is calculated and
the system moved to a new configurationxl 115xl1Dxl .
The series of geometry iterations is in our case started c
to a local minimum of the PES,x1 , and continued until all
components of the gradient vector fall below a given thre
old, dgmax. From a set of initial starting configurations th
goal is to locate as many of the saddle points directly c
nected to the minimum as possible.

The methods we consider can be separated in two m
classes.

~i! In the minimum mode following methods only th
lowest eigenvalue and the corresponding eigenvector of
Hessian are sought and subsequently used together with
gradient to determine the step vector. Either the Lanczos
erative method~Sec. II A! or the dimer method~Sec. II B!
can be used to find the minimum mode. In the form they
presented here they use exactly the same way of calcula
the step vector~Sec. II C!, the only difference lies in how the
lowest Hessian eigenvalue and the corresponding eigen
tor are obtained.

~ii ! In the all-mode following methods the full Hessia
matrix is calculated or approximated, and all eigenvalues
eigenvectors are used in conjunction with the gradient
determine the step vector. Here we have used a rational f
tion optimization approach as an example of an all-mo
following method. Two versions, one using the exact Hess
~Sec. II D! and the other using approximate Hessians~Sec.
II E!, are outlined below. We also investigate the behavior
a hybrid method~Sec. II F!.

A. A Lanczos iterative method for finding the
minimum mode

The activation-relaxation technique nouveau~ARTn!
employed in Ref. 19 was the first saddle point search met
that used a Lanczos iterative approach for calculating
lowest eigenvalue of the Hessian matrix. In this method
system is moved stepwise from a local minimum along
random direction until a negative Hessian eigenvalue is
countered. For each step the total energy of the configura
is minimized in the hyperplane perpendicular to the step
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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rection. Once a negative eigenvalue has been found, the
tem is pushed against the force along the eigenvector of
Hessian corresponding to the negative eigenvalue, w
minimizing the force in all other directions. Unless the low
est eigenvalue turns positive, this procedure ensures con
gence to a first-order saddle point, and as such it is an
provement of the earlier version of the activation-relaxat
technique presented in Refs. 11 and 15.

Two methods similar in spirit to ARTn were previous
introduced by Munro and Wales.16

~i! In one approach a shifted power iteration scheme16,41

is used to find the eigenvector corresponding to the low
eigenvalue of the Hessian matrix. A step uphill along t
eigenvector corresponding to the lowest eigenvalue is t
taken, while a conjugate gradient method is used to minim
the total energy in all other directions. Although the meth
only uses information about the eigenvector correspondin
the lowest eigenvalue, the full Hessian matrix needs to
constructed in each step. But what has been gained is
there is no longer a need for a full diagonalization of t
Hessian matrix, an operation that can become prohibitive
large systems.

~ii ! The second approach relies on a variational te
nique where the Rayleigh-Ritz ratio16,41 is minimized
through a conjugated gradient method. In this way the low
eigenvalue and the corresponding eigenvector can be
tained without having to build the full Hessian matrix. Th
obtained information is then used in the same way as in
first approach to step towards a saddle point.

In Ref. 24 the Davidson method40 was used to efficiently
characterize the stationary points on a PES by computing
lowest eigenvalue of the Hessian matrix. Although t
method was only used to determine whether a station
point was a local minimum or a saddle point, it was su
gested that the method could be used in conjunction w
eigenvector-following methods as an efficient way of op
mizing transition states. As such it could be another mem
of the class we refer to as minimum mode followin
methods.

In the following we will describe in some detail how on
of the schemes used here, the Lanczos scheme, can be
to calculate the minimum mode. The Hessian matrix is r
and symmetric and can therefore be reduced to a tridiag
form by an orthogonal similarity transformation,T5QtHQ
(t denotes the transpose!.42 After obtaining the eigenvalue
and eigenvector pairs,$l i ,vi

T% i 51,...,n of T, the similarity en-
sures that the eigenpairs ofH are given by $l i ,vi

5Qvi
T% i 51,...,n ~the superscriptT is used to indicate that th

eigenvector is obtained from the tridiagonal matrixT!. If, as
in our case, one is interested in the lowest eigenpair o
$l1 ,v1%, a Lanczos scheme can be used to construct a s
tridiagonal matrices,$T2 ,...,T j%, whose lowest eigenvalu
will converge tol1 as j increases.41,43,44The advantages o
the Lanczos scheme are that it~i! replaces the diagonaliza
tion of then3n Hessian matrix by the diagonalization of
tridiagonal matrixT j , where j !n whenn is large, and~ii !
requiresH to be known only in a small,j -dimensional basis
of the Lanczos vectors in whichH is tridiagonal, rather than
in ann-dimensional basis of a given set of primitive vecto
Downloaded 30 Dec 2004 to 128.95.104.66. Redistribution subject to AIP
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The tridiagonal matrices are constructed according to41,43,44

T j5F a1 b1

b1 a2 b2

b2 a3 �

� � b j 21

b j 21 a j

G , ~1!

whereak51,...,j and bk51,...,j 21 are obtained through an it
erative procedure. Beginning with a vectorr0 ~if it is the first
geometry iteration a random nonzero vector is chosen,
erwise the eigenvector found in the previous geometry cy
is used! and settingb05ir0i andq050 the following steps
are repeated (k51,...,j ):

qk5
r k21

bk21
, ~2!

uk5Hqk , ~3!

r k5uk2bk21qk21 , ~4!

ak5qk
t r k , ~5!

r k5r k2akqk , ~6!

bk5ir ki . ~7!

For each new set$ak ,bk21% the lowest eigenvaluel1
Tk of Tk

is found. Once

Ul1
Tk2l1

Tk21

l1
Tk21 U,dlL ~8!

the eigenvalue is considered converged tol15l1
Tk5 j . The

choice ofdlL will be discussed later. We also consider t
possibility of terminating the iteration cycles afternL

max itera-
tions. If the full Hessian is not known in a given basis
primitive vectors, the second step in the iteration cycle ab
@Eq. ~3!# can be replaced by the finite difference approxim
tion

uk5
g~xk!2g~xl !

dxL
, ~9!

with

xk5xl1dxLqk , ~10!

wherexl is the current configuration of the system andg the
gradient at the configuration indicated. The choice ofdxL

will be discussed later. As can be seen from Eqs.~9! and
~10!, the second derivative of the potential energy only ne
to be calculated along the Lanczos vectors. Note that
iteration formulas, Eqs.~2! through ~7!, do not contain a
reorthogonalization step.41,43,44In the cases we have consid
ered here the convergence is fast enough to ensure tha
orthogonality of the Lanczos vectors,$q1 ,...,qj%, is not lost.

The eigenvalues of the matricesTk51,...,j can be ob-
tained efficiently using a standard QL algorithm with implic
shifts.42 Once the lowest eigenvalue is considered conver
to l15l1

T j , the corresponding eigenvectorv1
T j , can be found
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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by inverse iteration. To be able to use the very efficie
Cholesky factorization scheme42 the eigenvalue spectrum o
T j is shifted so that all eigenvalues are positive. Furtherm
to ensure fast convergence of the inverse iteration, the low
eigenvalue is set to a small positive numberlsmall

T j ~we have

usedlsmall
T j 51024 eV/Å2). Finally, since the set of orthonor

mal Lanczos vectors$q1 ,...,qj% form the column vectors o
the matrix Q, the eigenvector corresponding to the lowe
eigenvaluel1 of H can be obtained throughv15Qv1

T j ~note

that Q is of dimensionn3 j , andv1
T j of dimensionj 31).

From the outline of the Lanczos method given above a
the method used to calculate the geometry step~Sec. II C!, it
is clear that there are many parameters available for tunin
reach optimal performance. However, very good perf
mance can be reached by adopting ‘‘standard’’ settings. T
will be discussed in more detail in Sec. IV.

B. The dimer method for finding the minimum mode

Since a full presentation of the dimer method was giv
in Ref. 17 we will only review the important aspects of th
method here together with some modifications. The dim
consisting of two auxiliary configurations~images! of the
system, is defined by

xl
15xl1dxDN̂, ~11!

xl
25xl2dxDN̂, ~12!

wherexl is the current configuration of the system anddxD

determines the displacement of the two images along a
vector N̂ ~in the first geometry iteration a random nonze
unit vector is chosen forN̂, while for the following geometry
iterations the lowest Hessian eigenvector found in the pr
ous cycle is used. The choice ofdxD will be discussed later!.
Next, the dimer energy is defined as the sum of the ener
for the two images,VD5V11V2 . The essential feature o
the method is that whenVD is minimized under the con
straint of fixed xl and dxD , i.e., a rotation of the dime
around the midpoint, the dimer will align itself along th
eigenvector of the Hessian matrix corresponding to the lo
est eigenvalue.

The following set of iterative operations will accomplis
this: First, the forcesFl52g(xl) and F152g(xl

1) are cal-
culated, and then used to approximate the force at the se
image throughF252Fl2F1 . Next, the scaled rotationa
force acting on the dimer is obtained byF'5(F1

'

2F2
')/dxD , whereFi

'[Fi2(Fi•N̂) N̂ for i 51,2. A second
unit vector~normal to the first by construction! is defined as
Q̂5F'/iF'i , and subsequentlyN̂ andQ̂ are rotated through
an angleduD within the plane spanned by the two unit ve
tors, giving two new orthonormal vectorsN̂* andQ̂* . Then
a second dimer is formed

xl
1* 5xl1dxDN̂* , ~13!

xl
2* 5xl2dxDN̂* , ~14!

and the forcesF1* 52g(xl
1* ), F2* 52Fl2F1* , and F*'

5(F1
' 2F2

' )/dxD calculated. In the following step th

* *
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magnitude of the rotational force atduD/2 is found through
F5(F*'

•Q̂* 1F'
•Q̂)/2 and a finite difference approxima

tion to the change in the rotational force~at duD/2) is ob-
tained by

F85
F*'

•Q̂* 2F'
•Q̂

duD
. ~15!

Subsequently, the angle with which theseconddimer now
has to be rotated to minimize the dimer energy is given b17

Du52
1

2
arctanS 2F

F8 D2duD/2. ~16!

Finally, if the rotational curvatureF8 is negative the rotation
by Du will move the dimer towards a~local! maximum for
the dimer energy. In this case addingp/2 to Du ensures that
the rotation is towards the minimum. Note that the te
duD/2 in Eq. ~16! is appropriate since the rotational curv
ture is estimated most accurately by Eq.~15! for the mid-
point of the two dimers, using central differencing.

If the dimer method is used to fully converge the lowe
eigenmode the procedure can be summarized as follows~i!
The rotational force on the first dimer is calculated. If it
below our chosen convergence criterion,F,dFD , the eigen-
vector corresponding to the lowest eigenvalue is conside
converged tov15N̂ and the eigenvalue calculated froml1

5@(F22F1)•N̂#/2dxD . ~ii ! If the rotational force is not be-
low the chosen criterion, the rotational force is obtained
the second dimer, the angle with which the second dim
needs to be rotated is calculated using Eq.~16!, and the sec-
ond dimer is rotated accordingly. The procedure is repea
until the convergence criterion in~i! is met. Note that for
each rotation of the dimer, two force evaluations are need

The given procedure can be used to fully converge
lowest eigenmode, but as we will see in the following t
dimer method needs considerably more force calls to re
convergence than the Lanczos method using this appro
However, by limiting the number of dimer rotations in com
bination with a less strict convergence criterion for the ro
tional force, the number of force evaluations can be dra
cally reduced. We do this by adding to the scheme outl
above: ~iii ! If we have reached the maximum number
allowed dimer rotationsnD

max the eigenvector is then approx
mated by the normalized vector along the rotated dimer. O
erwise we repeat the procedure starting from~i!. The eigen-
value corresponding to the obtained eigenvector is calcula
differently depending on in which step the iteration cycle
stopped: If the criterion in~i! is met the eigenvalue can b
obtained as in the paragraph above,l15@(F22F1)
•N̂#/2dxD . However, if the iteration cycle is terminated
step ~iii !, a bit more effort is needed. This is because
would like to avoid performing an extra force evaluation
get a reasonably accurate estimate of the eigenvalue@note
that after the rotation of the dimer in step~ii ! we have no
direct information about the forces on the rotated dime#.
First, a curvature estimate alongN̂* is obtained throughC
5@(F2* 2F1* )•N̂* #/2dxD . Then, using the local quadrati
approximation as indicated in Ref. 17, the obtained curvat
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



e

ed

d
ju
c
i
to

am
o

n
d

es
th
r-
u
u
es
d

em

in
d
te

tio
u

th

d
ur

om

n
a

re
an

r
uld
er-

di-
asis
-

to

it
al
i-

e

ted

st
er
ian

s in
step

s
ond-

e-
n
an
ting
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estimate can be corrected to give a reasonable estimat
the curvature~eigenvalue! along the rotated dimer through

l15C2 1
2 iF*'i tan~Du2duD/2!. ~17!

It is important to note that using a modified conjugat
gradient approach to determine the rotational plane~as de-
scribed in Ref. 17! improves the performance of the metho
especially for large systems. The improvement the con
gated gradient method offers compared to the steepest de
method is due to the former using the force at previous
erations in addition to the force at the current iteration
determine the optimal direction of minimization.42

The above outline indicates that there are many par
eters which can be adjusted when using the dimer meth
However, in practice there are simple strategies which ca
used to restrict the parameter space. This will be discusse
more detail in Sec. IV.

C. Determining the geometry step using the minimum
mode only

Compared to the effort needed to obtain the low
eigenpair of the Hessian, calculating the step vector for
minimum mode following methods is relatively straightfo
ward. As noted in Ref. 17, the force at the current config
ration will tend to pull the system towards the minimum, b
simply inverting the component of the force along the low
eigenmode will tend to move the system towards a sad
point on the PES. Another useful trick is to force the syst
to move only along the lowest~approximate! eigenmode in
convex regions of the PES, resulting in the system leav
the convex region faster. Both strategies can be combine
using a modified force to determine the direction of the s
vector as follows:

F†5H 2~Fl•v1!v1 if l1.0

Fl22~Fl•v1!v1 if l1,0
, ~18!

wherel1 is the lowest eigenvalue andv1 the corresponding
normalized eigenvector of the Hessian at the current posi
xl . Next, the length of the step should be determined. O
approach is to do a line search along the direction of
modified force by evaluating the force atxl* 5xl1dxlmN†,
with N†5F†/iF†i ~the choice ofdxlm will be discussed
later!. Equation~18! is then used to calculate the modifie
force atxl* and the magnitude of the force and the curvat
along the direction of displacement at (xl* 1xl)/2 are given
by F5(F* †1F†)•N†/2 andClm5(F* †2F†)•N†/dxlm , re-
spectively. Finally, the step vector can be calculated fr
Dxl5(2F/Clm1dxlm/2)N†. To avoid stepping too far the
step length is not allowed to exceedDxmax ~to be discussed
later!, and to ensure that we are leaving the convex region
fast as possible the step length is alwaysDxmax in this region.
A conjugated gradient approach to determine the directio
the step vector is used to reduce the number of force c
needed to reach a saddle point.

D. Rational function optimization: Exact Hessian

Based on a Taylor expansion of the PES around a cur
position and a constraint on the step length, Cerjan
Downloaded 30 Dec 2004 to 128.95.104.66. Redistribution subject to AIP
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Miller showed ~through the use of a Lagrangian multiplie
technique!1 that a modified Newton-Raphson approach co
be turned into an efficient PES walker. With steps det
mined by

Dxi52
gi

l i2g
, ~19!

whereDxi andgi are the components of the step and gra
ent vectors, respectively, in the Hessian eigenvector b
(Dx5( i 51

n Dxivi , g5( i 51
n givi , vi being the Hessian eigen

vectors, andl i the Hessian eigenvalues!, they outlined how
g could be chosen in order to walk efficiently from close
a minimum to a saddle point. In Ref. 3 a more detailed
account on how to choose the optimalg was given~leading
to somewhat different recommendations than in Ref. 1!. An
important element of the strategy is that, ifl1.0, g can be
chosen in such a way as to ensure an uphill walk alongv1

and a downhill walk in all other directions. Then, in Ref. 5
was shown how Eq.~19! can be obtained when a ration
function optimization~RFO! approach is used to approx
mate the PES locally by

V~xl 11!2V~xl !5
gt
•Dxl1

1
2 Dxl

t
•H•Dxl

11Dxl
t
•S•Dxl

~20!

and choosingS5g1. Here we have chosen to work with th
slightly more general form ofS ~also introduced in Ref. 5!
where the components of the step vector are calcula
through

Dxi52
gi

l i2g i
, ~21!

with l i2g i given by

l i2g i5
1
2 di~ ul i u1Al i

214gi
2!,

d1521, di51 for i 5$2,...,n%. ~22!

This defines a walker that will move uphill along the lowe
eigenmode of the Hessian and downhill along all oth
modes. The particular choice for the rescaling of the Hess
eigenvalues has been motivated by the consideration
Refs. 5 and 6. We also ensure that the total length of the
vectoriDxl i5i( i 51

n Dxivi i does not exceedDxmax. Standard
LAPACK ~Ref. 45! routines for real symmetric matrice
have been used to calculate all eigenvalues and corresp
ing eigenvectors.

E. Rational function optimization: Approximate
Hessian

As already noted in Ref. 3 there is nothing in the proc
dure described above~Sec. II D! that requires the Hessia
matrix to be exact—it can equally well be applied using
approximate Hessian. We have used two different upda
schemes

H l 115H l1DH l , ~23!

one due to Powell46 and the other to Bofill.10 The Powell
update is given by
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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DH l
Powell

5
~Dgl 112H l•Dxl !•Dxl

t1Dxl•~Dgl 112H l•Dxl !
t

Dxl
t
•Dxl

2~Dgl 112H l•Dxl !
t
•Dxl

Dxl•Dxl
t

~Dxl
t
•Dxl !

2 ~24!

with Dgl 115g(xl 11)2g(xl), and the Bofill update by

DH l
Bofill5fBofillDH l

SR11~12fBofill !DH l
Powell, ~25!

whereDH l
SR1 is a symmetric rank one update47

DH l
SR15

~Dgl 112H l•Dxl !•~Dgl 112H l•Dxl !
t

~Dgl 112H l•Dxl !
t
•Dxl

, ~26!

and the Bofill factor is given by

fBofill5
@~Dgl 112H l•Dxl !

t
•Dxl #

2

@~Dgl 112H l•Dxl !
t
•~Dgl 112H l•Dxl !#~Dxl

t
•Dxl !

.

~27!

F. Rational function optimization combined
with a minimum mode following method:
A new hybrid approach

The RFO approaches~with an exact or approximate Hes
sian! can in some cases encounter problems with leaving
convex region. Also, by construction, they will tend to clim
out of the convex region by following the lowest streambe
When trying to discover all saddle points around a minim
this tendency can become a weakness compared to the
mum mode following methods. Based on our experien
with the minimum mode following methods we propose
new hybrid RFO approach which partly remedies this pr
lem: In the convex region the step vector can be determi
as in Sec. II C using only the lowest eigenvalue and the c
responding eigenvector of the Hessian. Thus the hybrid P
walker is a minimum mode following method when the sy
tem is located in a convex region of the PES~although the
Hessian matrix is updated for each step when using appr
mate Hessians!. Once the lowest eigenvalue of the Hessi
becomes negative the traditional RFO approach as desc
above is used. This approach is similar in spirit to the t
methods introduced by Munro and Wales16 and the ARTn.19

The main difference is that no optimization in the hyperpla
perpendicular to the step direction is performed in the c
vex region, and the full Hessian matrix is constructed a
diagonalized in each step. The method will therefore su
from the same computational bottleneck as the traditio
RFO methods with respect to the diagonalization of the H
sian matrix for large systems, but it will in most of the cas
we have considered lead to appreciably more saddle po
found.

III. MODEL SYSTEMS AND POTENTIAL ENERGY
SURFACES

As in Ref. 28, all the PES walkers have been tested o
model system involving transitions in a seven-atom Pt isla
on a Pt~111! surface. The pairwise interaction between t
atoms is given by the Morse potential
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V~r !5De~e22a(r 2r 0)22e2a(r 2r 0)! ~28!

with parameters chosen to reproduce diffusion barriers on
surfaces,48 De50.7102 eV, a51.6047 Å21, r 0

52.8970 Å. The potential is cut and shifted at 9.5 Å. T
surface is represented by a six layer slab where each l
contains 56 independent atoms and periodic boundary c
ditions have been applied.

In order to study how the walkers perform on PESs
different dimensionality, the number of atoms allowed
move have been varied.

~i! In the full system the seven-atom island and the
three layers of the slab are free to move, the bottom th
layers being kept frozen. There are 175 atoms free to mo
thus the PES is 525-dimensional~525D!.

~ii ! In a reduced size system only the seven-atom isl
atoms are allowed to move, whereas all atoms in the un
lying slab are kept frozen. This represents a 21D PES.

~iii ! In the second reduced size system only one e
atom of the seven-atom island is free to move whereas
other atoms are kept frozen, giving rise to a 3D PES.

In all cases 500 initial configurations have been det
mined by displacing randomly the atoms of the seven-at
island that are free to move a distanceDxran. The searches
are stopped when all components of the gradient vector f
below the thresholddgmax50.001 eV/Å. In the following
section the results are presented in the order of increa
dimensionality of the system, before some overall trends
outlined.

IV. RESULTS AND DISCUSSION

A. One atom free to move

A contour plot of the 2D PES obtained by minimizin
the potential energy along the coordinate for motion norm
to the surface for each lateral position of the edge atom
is free to move is shown in Fig. 1. There are five sad
points within 4 eV of the starting minimum that are direct
connected to this minimum~given by all atoms in the seven
atom island being located in neighboring fcc sites, see F
2!. Two of the saddle points~at 1.693 and 1.978 eV abov
the minimum! are found when the atom is moving aroun
the island keeping as close to the neighboring edge atom
possible. A third saddle point~2.134 eV! is found when the
atom is moving away from the six other island atoms. T
fourth and fifth saddle points~3.665 and 3.667 eV! are found
when moving the atom on top of the island.

The Lanczos results were obtained with settings sho
in Tables I and II, together with the parameter ranges tes
and found to give similar results. As seen from the tables
Secs. II A and II C, there are a number of parameters av
able for tuning. In this study we have made an effort to rea
optimal search performance, and this has lead to some
ommendations towards standard parameter settings
could be adopted by others. This will be discussed in m
detail in Sec. IV D. The search results for the Lancz
method are given in Table II and we see that on aver
about five force calls per geometry step are needed to re
the saddle points: one is used to calculate the gradient a
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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current position, three are used to converge to the low
Hessian eigenvalue, and the last one is used in the line m
mization. We note that when using a maximum step length
0.1 Å the third saddle point listed in Fig. 2 is not foun
within the 500 searches performed. This can be unders
from looking at Fig. 1: When using a short maximum st
length and a fully converged lowest eigenmode~this can be
obtained withdlL50.01 or lower!, getting into the region
which would allow for a convergence on the third sadd
point is rather difficult. Using a longer maximum step leng
solves this problem.

The results for the dimer method were obtained with
settings given in Tables I and II. Parameter ranges tested
found to give similar results are also indicated. As for t
Lanczos method, there are a number of parameters tha

FIG. 1. A contour plot of the PES obtained by choosing the optimal he
above the surface for the one atom that is free to move for each positio
the surface plane is displayed. The positions of the five saddle point
rectly connected to the starting minimum are marked by filled squares
the corresponding final states indicated by filled circles. The starting m
mum is indicated by1. The six other atoms in the seven-atom island th
are kept frozen are indicated by the crosses~see also Fig. 2!. The contour
spacing is 0.2 eV.

FIG. 2. The initial configuration without the random displacements, and
five saddle points~left! together with the corresponding final configuratio
~right!, are shown for the 3D PES. The saddle point energies with respe
the initial configuration are also indicated~in eV!.
Downloaded 30 Dec 2004 to 128.95.104.66. Redistribution subject to AIP
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be tuned to reach optimal performance, and that has b
done here. This has lead to some recommendations tow
standard settings for others to use~see Sec. IV D!. The dimer
results are given in Table II and it is seen that the sh
maximum step length of 0.1 Å results in the third sadd
point not being found, if the dimer method is used in t
mode that the dimer is rotated until the lowest eigenmod
fully converged ~the maximum rotational force allowe
needs to be set todFD50.01 eV/Å or lower to reach con
vergence!. That this behavior is the same as for the Lancz
method is to be expected on the basis that the Lanczos
dimer methods use exactly the same algorithm for calcu
ing the geometry step. The only difference between the
methods is how many force calls are needed to reach a
verged lowest eigenmode. From Table II we see that w
the dimer is allowed to rotate until the lowest Hessian eig
value is fully converged on average about 6.8 force eval
tions per geometry step are needed. However, by allowin
maximum of only one dimer rotation per geometry step
combination with a less strict convergence criterion for t
rotational force (dFD51.0 eV/Å), theaverage number o
force calls needed is considerably reduced. With these se
parameters the dimer method is somewhat more effic
than the Lanczos method with respect to the average num
of force calls needed, and all the five saddle points are fou
This is the way the dimer method should be employed
using the dimer method to fully converge the lowest Hess
eigenvalue is not a good strategy, as is demonstrated by
results in Table II. For the longer maximum step leng
Dxmax50.5 Å good performance was reached with a ma
mum of one or two dimer rotation anddFD51.0 eV/Å. As
for the shorter maximum step length the dimer method
somewhat more efficient than the Lanczos method with
spect to the average number of force calls needed.

The results of the RFO approach using the Bofill a
Powell updaters are very similar, and therefore only the B
fill results have been included in Table II. They show th
there is a significant decrease in the average number of f
evaluations needed to find the saddle points when increa
the maximum step length from 0.1 to 0.2 Å. It is also se
that increasing the step length beyond 0.2 Å leads to a
tional reduction in the number of force calls, but at the sa
time a rather large number of unwanted search result
produced. Somewhat surprisingly, it does not matter v
much whether the RFO search using an approximate~up-
dated! Hessian is started with an exact initial Hessian o
unit matrix.

t
in
i-

th
i-
t

e

to

TABLE I. The finite difference parameters used for the Lanczos and di
methods. Also indicated are the parameter ranges tested and found to
similar results to the ones presented in this study.

Lanczos dxL ~Å! dxlm ~Å!

Used 1024 1023

Tested 1026– 1022 1024– 1021

Dimer dxD ~Å! duD ~rad! dxlm ~Å!

Used 1024 1024 1023

Tested 1025– 1021 1025– 1021 1024– 1021
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE II. The overall performance of the different PES walkers is shown for the case where one edge atom of the seven-atom island is free to moDxmax

is the maximum step length allowed.nTS is the number of saddle points found within 4 eV of the starting minimum and directly connected to it; there a
of them.n indicates how many of the searches found one of thenTS saddle points~out of 500 searches performed!. ^ f & and^s& are the average number of forc
calls and geometry steps needed, respectively.ñ indicates how many searches found saddle points within 4 eV of the starting minimum and not d
connected to it.dlL is the Lanczos eigenvalue convergence criterion,nD

max is the maximum number of dimer rotations, anddFD is the convergence criterion
used for the rotational force. For the approximate RFO methods searches have been started both with a unit matrix and an exact Hessian. All reor
a random initial displacement ofDxran50.1 Å.

Method Dxmax ~Å! nTS n ^ f & ^s& ñ

Lanczos~Secs. II A, II C!, dlL50.01 0.1 4 458 144.9 29.8 0
dlL50.01 0.5 5 479 75.7 15.9 0
Dimer ~Secs. II B, II C!, dFD50.01 eV/Å 0.1 4 458 203.6 29.8 0
nD

max51 anddFD51.0 eV/Å 0.1 5 441 112.1 32.8 3
nD

max51 anddFD51.0 eV/Å 0.5 5 323 60.5 17.6 119
nD

max52 anddFD51.0 eV/Å 0.5 5 440 70.4 17.2 22

RFO ~exact, Sec. II D! 0.1 5 500 25.9 25.9 0
0.5 5 500 10.2 10.2 0

Hybrid RFO ~exact, Secs. II D, II F! 0.1 5 458 25.0 25.0 0
0.5 5 482 8.5 8.5 0

RFO ~Bofill, Sec. II E! 0.1 5 498 30.2 30.2 2
Exact initial H 0.1 5 497 30.0 30.0 3

0.2 5 487 21.2 21.2 11
Exact initial H 0.2 5 491 19.9 19.9 9

0.5 5 292 18.5 18.5 146
Exact initial H 0.5 5 340 19.2 19.2 140

Hybrid RFO ~Bofill, Secs. II E, II F! 0.1 5 427 35.2 35.2 7
Exact initial H 0.1 5 487 30.1 30.1 0

0.2 5 298 23.3 23.3 77
Exact initial H 0.2 5 450 20.4 20.4 40

0.5 5 203 19.1 19.1 101
Exact initial H 0.5 5 178 15.4 15.4 212
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When limiting the maximum step length to 0.1 Å it
seen from Table II that the number of geometry steps nee
to reach the saddle points is quite similar for all the differe
methods. But in terms of the average number of force c
needed the minimum mode following methods perform s
stantially worse than the RFO approaches. The reason is
for the minimum mode following methods a number of for
calls are needed per geometry step to~partially! converge the
lowest eigenmode of the Hessian and perform a line mini
zation step, whereas the RFO approaches only need
force call per geometry step. We also note that the appr
mate RFO scheme is almost as good as the exact one
short maximum step length, indicating that the updating f
mulas result in a rather good approximation to the full H
sian matrix.

Increasing the maximum allowed step length reduces
average number of geometry steps and force calls neede
reach the saddle points for all methods tested, as seen
Table II. However, the reduction is the strongest for the R
method with an exact Hessian. The higher reduction fac
for the RFO method with an exact Hessian~about 2.5 when
increasing the maximum step length from 0.1 to 0.5 Å! com-
pared to the minimum mode following methods~about 1.9!
indicates that the knowledge of all eigenmodes versus o
the lowest eigenmode helps considerably in reducing
number of force calls needed to reach the saddle points.
thermore, the results in the table suggest that the local,
ond order approximation to the 3D PES when making a s
Downloaded 30 Dec 2004 to 128.95.104.66. Redistribution subject to AIP
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is rather good even for a maximum allowed step length
0.5 Å—that the approximate RFO schemes lead to a la
number of unwanted search results is due to the not s
ciently accurate approximation of the Hessian eigenmode
these schemes.

The performance of the hybrid methods, both with ex
and approximate Hessians, has been checked and found
quite similar to the original ones with respect to the avera
number of force calls~Table II!. For the hybrid RFO ap-
proach with an exact Hessian the number of force c
needed is reduced slightly compared to the RFO appro
with an exact Hessian. For the hybrid RFO approach w
approximate Hessians starting the searches with a unit m
results in a slight increase in the number of force calls
compare to the RFO approach with approximate Hess
starting with a unit matrix. The number of force calls is abo
the same when comparing the traditional and hybrid appro
mate RFO schemes with an exact initial Hessian, except
Dxran50.5 Å where there is a decrease with the hyb
scheme. The hybrid approximate RFO schemes with a m
mum step length of 0.5 Å both result in more than a half
the searches leading to unwanted results.

All results discussed above have been obtained w
Dxran50.1 Å ~the distance with which the initial configura
tion is randomly displaced away from the starting minimum!.
Tests varyingDxran in the interval 0.1–0.3 Å show that th
average number of force calls needed to reach the diffe
saddle points hardly changes, except for a slight increase
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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the approximate RFO schemes~results not shown!. However,
the choice ofDxran do to some extent influence the numb
of times the different saddle points are found. For all me
ods except Lanczos the number of times the third, fou
and fifth saddle points are found increases with increas
Dxran, together with a decrease in the number of times
first and second saddle points are found. For the Lanc
method the third saddle point is found most often w
Dxran50.1 Å. From the results presented in Fig. 3, we s
that the Lanczos method performs somewhat better than
other methods with respect to the number of times the m
difficult to locate saddle point~the third one! is found. An-
other way of increasing the number of times the third, four
and fifth saddle points are found for the RFO approache
to use the hybrid version, but the Lanczos method still
mains the more efficient at finding the most difficult to loca
saddle point.

B. Seven atoms free to move

We have found more than 250 different saddle poi
within 4 eV of the starting minimum and directly connect
to it. Even though they can be grouped together in clas
describing similar transition mechanisms, there are m
than 25 of these classes. Since our goal is to compare
the different saddle point search methods perform, and no
provide a full analysis of possible transitions mechanisms
our model system, we will not enter into further detail on th
point.

FIG. 3. In the figure the average number of force calls~filled circles! needed
to find the saddle point~the saddle point corresponding to the saddle po
number is indicated in Fig. 2! is shown together with the maximum an
minimum number of force calls~‘‘error’’ bars! for the 3D PES~left axis is
used!. The asterixes indicate how often the saddle points were found~out of
the 500 searches performed, right axis is used!. Note the logarithmic scale
on the right axes. In~a! the results for the Lanczos method are display
with Dxmax50.5 Å andDxran50.1 Å, in ~b! for the RFO method employing
an exact Hessian withDxmax50.5 Å andDxran50.3 Å, and in~c! for the
RFO method with a Bofill update starting with a unit matrix,Dxmax

50.15 Å, andDxran50.3 Å.
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The Lanczos and dimer results~Table III! were obtained
after a considerable effort searching the large param
space for optimal performance. The resulting settings are
dicated in Tables I and III. As a results of the effort to rea
optimal search performance, a set of standard parameter
tings was developed that could be adopted by others. T
will be discussed in more detail in Sec. IV D. When ful
converging the lowest Hessian eigenvalue the Lanc
method needs on average about 8.7 force calls per geom
step for Dxmax50.1 Å (dlL must be 0.0001 or lower to
reach convergence!, whereas the dimer method require
about 16.4 force calls~the maximum rotational force allowe
needs to be set todFD50.01 eV/Å or lower to obtain con-
verged results!. This clearly indicates that the Lanczo
method is better in converging the lowest eigenmode t
the dimer method for a given geometry. However, fully co
verging the lowest Hessian eigenvalue at each geometry
is not a good strategy when employing the dimer or Lanc
method. Optimal performance for the dimer method
Dxmax50.1 Å is obtained when limiting the number of rota
tions allowed for each geometry step (nD

max51) in combina-
tion with a less strict convergence criterion for the rotation
force (dFD50.1 eV/Å). Asseen from Table III this leads to
a larger number of saddle points being found, and a mar
decrease in the average number of force calls needed
saddle point found that is directly connected to the start
minimum ~if the goal is to locate as many saddle poin
directly connect to the starting minimum as possible, this
an important measure of the success of a series of searc!.
The performance of the Lanczos method forDxmax50.1 Å
can also be improved by limiting the number of Lancz
iterations for each geometry step (nL

max53) and using a less
strict criterion for the Lanczos eigenvalue convergen
(dlL51.0), even though the effect is smaller than the eff
of limiting the number of rotations for the dimer method
conjunction with a less strict convergence criterion for t
rotational force. From Table III we see that increasing t
maximum step lengthDxmax is an efficient way of increasing
the number of saddle points found and decreasing the a
age number of force calls needed per saddle point found
is directly connected to the starting minimum. Starting t
searches further away from the minimum~by increasing
Dxran) also improves the efficiency of the minimum mod
following methods for finding as many saddle points as p
sible. In this way, more saddle points are found with t
minimum mode following methods than with the RFO met
ods. The results of Table III indicate that the two minimu
mode following methods are rather similar both with resp
to the average number of force calls needed to reach
saddle points and the number of saddle points found dire
connected to the initial minimum.

The RFO approach with an exact Hessian is from Ta
III seen to be very efficient compared to the minimum mo
following methods. For the same maximum step length c
siderably less geometry steps and force calls are neede
reach the saddle points. As in Sec. IV A, this indicates t
the knowledge of all eigenmodes instead of the lowest eig
mode only helps considerably in reducing the number
geometry steps needed to reach the saddle points. How

t
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TABLE III. The overall performance of the different walkers for the 21D PES.nL
max is the maximum on the number of Lanczos iterations anddlL is the

Lanczos eigenvalue convergence criterion.nD
max is the maximum number of dimer rotations anddFD is the convergence criterion used for the rotational for

^ f TS& is the average number of force calls needed per saddle point found that is directly connected to the starting minimum. The rest of the nome
the same as in Table II. Each set of results is based on 500 searches. There are more than 250 saddle points within 4 eV of the starting minimum
connected to it.

Method Dxmax ~Å! Dxran ~Å! nTS n ^ f & ^ f TS& ^s& ñ

Lanczos~Secs. II A, II C!, dlL50.0001 0.1 0.1 20 497 435.8 10375.9 50.0 1
nL

max53 anddlL51.0 0.1 0.1 42 486 266.8 3175.9 54.2 14
nL

max53 anddlL51.0 0.4 0.1 84 344 190.4 1133.5 38.9 150
nL

max53 anddlL51.0 0.4 0.3 94 342 190.7 1014.2 38.9 122

Dimer ~Secs. II B, II C!, dFD50.01 eV/Å 0.1 0.1 20 497 820.5 20512.4 50.0 1
nD

max51 anddFD50.1 eV/Å 0.1 0.1 48 484 218.8 2279.4 57.6 14
nD

max51 anddFD50.1 eV/Å 0.3 0.1 84 249 164.8 960.9 44.0 221
nD

max52 anddFD50.1 eV/Å 0.45 0.1 82 335 197.3 1203.3 39.4 157
nD

max51 anddFD50.1 eV/Å 0.3 0.3 95 259 176.8 930.7 46.9 164

RFO ~exact, Sec. II D! 0.1 0.1 17 499 32.8 964.8 32.8 0
0.5 0.1 17 499 11.4 335.2 11.4 0
0.5 0.3 59 470 11.9 100.7 11.9 28

Hybrid RFO ~exact, Secs. II D, II F! 0.1 0.1 32 495 33.6 525.3 33.6 4
0.5 0.1 40 493 11.1 139.1 11.1 7
0.5 0.3 68 458 12.1 88.6 12.1 50

RFO ~Bofill, Sec. II E! 0.1 0.1 6 499 60.6 5047.6 60.6 0
Exact initial H 0.1 0.1 16 497 49.6 1548.8 49.6 1

0.2 0.1 10 500 47.8 2389.5 47.8 0
Exact initial H 0.2 0.1 13 497 36.8 1416.4 36.8 3
Exact initial H 0.2 0.3 60 402 73.9 616.1 73.9 94

Hybrid RFO ~Bofill, Secs. II E, II F! 0.1 0.1 10 500 61.0 3049.9 61.0 0
Exact initial H 0.1 0.1 33 484 50.0 757.4 50.0 16

0.2 0.1 10 492 50.1 2503.2 50.1 8
Exact initial H 0.2 0.1 35 470 39.1 558.1 39.1 28
Exact initial H 0.2 0.3 65 289 71.9 552.9 71.9 183
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the number of saddle points found is smaller than for
minimum mode following methods. This can to some ext
be improved by employing the hybrid RFO with an exa
Hessian~note that the hybrid version is just as efficient as
traditional RFO approach employing an exact Hessian w
respect to the average number of force calls!. An even more
efficient way of increasing the number of saddle points fou
is to increaseDxran ~the distance with which the initial con
figuration is randomly displaced away from the starti
minimum!, but the number of saddle points found rema
lower for the RFO approach with an exact Hessian than
the minimum mode following methods. However, the av
age number of force calls needed per saddle point found
is directly connected to the starting minimum is considera
lower than for the minimum mode following methods.

The RFO approach employing a Bofill update of t
Hessian performs very well compared to the minimum mo
following methods with respect to the average number
force calls needed, as is seen from Table III. In the ca
where an exact initial Hessian is used the average numb
geometry steps needed to reach the saddle points is slig
smaller than for the minimum mode following methods.
the search is started with a unit Hessian matrix the numbe
geometry steps needed does increase, but due to the u
only one force call per step, the RFO approach with a Bo
update requires on average considerably less force calls
Downloaded 30 Dec 2004 to 128.95.104.66. Redistribution subject to AIP
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the minimum mode following methods. However, as for t
RFO approach with an exact Hessian, relative few sad
points are found when employing the RFO approach wit
Bofill update andDxran50.1 Å. But from considering the
average number of force calls needed per saddle point fo
that is directly connected to the starting minimum, we s
that in all but one case a considerable improvement can
obtained when employing the hybrid version of the appro
mate RFO approach instead of the traditional one. Furth
more, increasingDxran to 0.3 Å leads to a marked improve
ment for the traditional RFO approach employing a Bo
update, whereas the further improvement is marginal in
case of the hybrid version. From these results we also
that the approximate RFO approaches are better than
minimum mode following methods with respect to avera
number of force calls needed per saddle point found tha
directly connected to the starting minimum only in the cas
where the searches are started with a good initial Hessia

The results for the RFO approach employing a Pow
update are quite similar to those for the Bofill update a
therefore not included in Table III. When the searches
started with a unit matrix the Powell update needs on av
age about ten force calls more than the Bofill update~for all
Dxmax). Starting with an exact Hessian matrix the differen
is smaller, the Powell update needing on average about
force calls more than the Bofill update. This indicates th
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE IV. The overall performance of the different walkers for the 525D PES. The nomenclature is the same as in Tables II and III. Each set of
based on 500 searches. There are at least 170 saddle points within 4 eV of the starting minimum and directly connected to it.

Method Dxmax ~Å! Dxran ~Å! nTS n ^ f & ^ f TS& ^s& ñ

Lanczos~Secs. II A, II C! nL
max53 anddlL51.0 0.1 0.1 40 365 514.0 6424.8 103.6 132

nL
max54 anddlL50.1 0.5 0.1 69 214 378.3 2741.3 73.8 281

nL
max54 anddlL50.1 0.5 0.3 86 210 372.1 2163.4 72.7 265

Dimer ~Secs. II B, II C! nD
max51 anddFD50.1 eV/Å 0.1 0.1 52 375 405.4 3898.4 105.9 122

nD
max51 anddFD50.1 eV/Å 0.3 0.1 60 145 314.4 2620.1 83.0 335

nD
max52 anddFD50.1 eV/Å 0.45 0.1 66 196 360.7 2732.8 71.2 291

nD
max51 anddFD50.1 eV/Å 0.15 0.3 78 276 335.1 2148.3 87.8 222

RFO ~exact, Sec. II D! 0.1 0.1 11 492 40.9 1859.1 40.9 0
0.5 0.1 10 488 15.0 750.0 15.0 0
0.5 0.3 45 413 19.1 212.2 19.1 57

Hybrid RFO ~exact, Secs. II D, II F! 0.1 0.1 18 500 36.3 1008.3 36.3 0
0.5 0.1 51 476 14.9 146.1 14.9 24
0.5 0.3 58 411 17.1 147.4 17.1 87

RFO ~Bofill, Sec. II E! 0.1 0.1 6 449 1420.9 118408.3 1420.9 17
Exact initial H 0.1 0.1 5 494 311.3 31130.0 311.3 4

0.2 0.1 16 353 1286.6 40206.3 1286.6 124
Exact initial H 0.2 0.1 10 432 342.6 17130.0 342.6 63
Exact initial H 0.1 0.3 27 474 539.2 9985.2 539.2 20

Hybrid RFO ~Bofill, Secs. II E, II F! 0.1 0.1 9 441 1351.1 75005.6 1351.1 44
Exact initial H 0.1 0.1 11 481 282.6 12845.5 282.6 17

0.2 0.1 17 294 1224.3 36008.8 1224.3 154
Exact initial H 0.2 0.1 15 380 291.4 9713.3 291.4 110
Exact initial H 0.1 0.3 30 406 465.2 7753.3 465.2 84
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the Bofill updater is better in building an approximate He
sian from a poor starting situation than the Powell upda
whereas they are almost equally good in preserving a g
approximation to the Hessian for this particular system.

C. 175 atoms free to move

We have found more than 170 different saddle poi
within 4 eV of the starting minimum and directly connect
to it, belonging to more than 20 different classes describ
similar transition mechanism. For the same reason as in
preceding section, we will not enter into further detail on th
point.

The results of the searches with the Lanczos and di
methods for the 525D PES are given in Table IV. As for t
3D and 21D PESs considerable effort went into finding
rameters giving optimal performance~the parameters use
are given in Tables I and IV!. But, also as in the previou
cases, close to optimal performance can be reached
standard settings~see Sec. IV D!. Using the dimer method to
fully converge the lowest Hessian eigenvalue at each ge
etry step is very inefficient~results not shown!, and even
though the Lanczos method performs considerably bette
this respect~results also not shown!, this is a strategy tha
should not be followed. Optimal performance for the dim
method is reached by limiting the number of rotations
each geometry step (nD

max51 or 2! in combination with a less
strict convergence criterion for the rotational force (dFD

50.1 eV/Å). This also results in more saddle points bei
found and a large decrease in the number of force c
needed per saddle point found that is directly connecte
Downloaded 30 Dec 2004 to 128.95.104.66. Redistribution subject to AIP
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the starting minimum~even though the number of unwante
results of the searches do increase!. For the Lanczos method
the lowest average number of force calls per saddle p
found that is directly connected to the starting minimum
obtained when restricting the maximum number of Lancz
iterations per geometry step (nL

max54) in conjunction with a
less strict criterion for the Lanczos eigenvalue converge
(dlL50.1). As also seen in the two preceding sections
two minimum mode following methods are rather simil
both with respect to the average number of force calls nee
to reach the saddle points and the number of saddle po
found directly connected to the initial minimum.

Table IV shows that the average number of geome
steps taken to reach a saddle point by the RFO appro
employing an exact Hessian is considerably smaller than
the minimum mode following methods. It is worth notin
that the increase in the average number of steps take
rather small when increasing the dimension of the PES fr
21 to 525. This indicates that accurate Hessian informa
for all degrees of freedom can be used very efficiently b
PES walker. Employing the hybrid version of the RFO a
proach with an exact Hessian gives a marked improvem
above the traditional RFO approach with an exact Hess
with respect to the number of saddle points found, result
in less force calls needed per saddle point found that is
rectly connected to the starting minimum. Another way
increasing the efficiency for the traditional RFO approa
with an exact Hessian in finding as many saddle points
possible is to increaseDxran, whereas in the case of the hy
brid version no further gain in efficiency is achieved.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE V. Parameter choices that will result in an efficient use of the minimum mode following methods
parameters which are affecting the efficiency the most are listed first. For the finite difference paramet
smaller value should be used in conjunction with empirical~analytical! potentials and the larger value when th
force evaluations contain numerical noise~see text!. For small or medium sized systems a maximum of thr
Lanczos iterations should be employed, whereas a maximum of four Lanczos iterations is more appropr
large systems.

Lanczos Dxmax ~Å! Dxran ~Å! nL
max dlL dxL ~Å! dxlm ~Å!

0.1–0.5 0.1–0.3 3, 4 0.1 0.001, 0.01 0.001, 0.01

Dimer Dxmax ~Å! Dxran ~Å! nD
max dFD ~eV/Å! dxD ~Å! duD ~rad! dxlm ~Å!

0.1–0.5 0.1–0.3 1 0.1 0.001, 0.01 0.001, 0.01 0.001, 0.
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The RFO approach with a Bofill update started with
exact Hessian requires on average less force calls to rea
saddle point than the minimum mode following methods
Dxran50.1 Å, but at the same time we see from Table
that the average number of geometry steps needed is co
erably higher. Also, the number of saddle points found
low, and the number of force calls needed per saddle p
found that is directly connected to the starting minimum
much higher than for the minimum mode following method
If the searches are started with a unit matrix the RFO
proach with an approximate Hessian performs considera
worse than the minimum mode following methods: Not on
does it take a lot more force calls to home in on a sad
point, the number of force calls needed per saddle p
found that is directly connected to the starting minimum
very high. Employing the hybrid version of the RFO a
proach with a Bofill update improves all aspects of t
search performance compared to the traditional RFO
proach with a Bofill update, but the minimum mode metho
remain superior with respect to the number of force ca
needed per saddle point found that is directly connecte
the starting minimum. Furthermore, increasingDxran does
lower the number of force calls needed per saddle p
found that is directly connected to the starting minimum, b
not enough to compete with the minimum mode metho
and the advantage above the minimum mode methods
respect to the average number of force calls needed is
Thus when the dimension of the system increases the B
updater is struggling harder to buildup a reasonable appr
mation to the Hessian. Even when provided with an excel
~in this case exact! starting Hessian the update formulas a
struggling to keep up with the changes in the Hessian as
system moves towards the saddle points.

For this 525D PES the Powell updater performs cons
erably worse than the Bofill updater—starting with an ex
Hessian the Powell updater requires 200–250 more fo
calls than the Bofill updater and starting with a unit matrix
requires 350–500 force calls more~results not shown here!.

D. Emerging guidelines for optimal searches

From Secs. II, IV A, IV B, and IV C it is clear that the
number of tunable parameters is larger for the two minim
mode following methods than for the~hybrid! RFO methods.
However, in most cases it will not be necessary to perform
full optimization with respect to all parameters. Through o
experience with the current systems~but also other systems!
c 2004 to 128.95.104.66. Redistribution subject to AIP
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we have developed a set of parameter settings that for m
purposes will result in efficient saddle point searching. Th
parameters are displayed in Table V, where they have b
listed in the order of importance with respect to the e
ciency of the searches.

The easiest parameters to set are the finite differe
parameters (dxL , dxD , duD , and dxlm). Optimization of
these parameters beyond the values given in Table V will
result in appreciable changes in the outcome of the searc
In our experience search performance varies in the ra
610% for the parameter ranges displayed in Table I, a
only those that have a deeper interest in the methodolog
the Lanczos or dimer method might want to explore oth
settings than given in Table V. When using empirical~ana-
lytical! potentials, the finite difference distances~angles! can
be set to the small value 0.001 Å~radian!. If the calculated
forces contain numerical noise, for example, when empl
ing electronic structure calculation based on density fu
tional theory, the distances~angles! should be chosen large
@0.01 Å ~radian!#. Note that in the latter case the calculat
forces may have to be converged more accurately than
mally done for minimizations, because the minimum mo
following methods calculate curvatures through finite for
differences.

The minimum mode following methods are most ef
cient if the lowest Hessian eigenvector is not fully converg
at the beginning of a search—there is little to be gained
finding the lowest curvature mode very accurately at a po
in space far from a saddle point. In the convex region arou
minima, where all Hessian eigenvalues are positive,
minimum mode finding iterations should certainly not
highly optimized. Finding the lowest mode accurately in th
region will typically result in a low energy, delocalize
breathing mode~when considering high-dimensional sy
tems!. Once such a delocalized mode is found, the minim
mode following methods will rarely be able to find a sadd
point. It is a far better strategy to ensure that the low
Hessian eigenvector is gradually converged towards the l
est curvature mode as the system is moved from the sta
configuration towards the saddle point. Actually, this grad
convergence is exactly what is accomplished by allow
only a few Hessian eigenvector optimization iterations p
geometry step.

Varying the parameters that control the minimum mo
optimization (nL

max, dlL , nD
max, anddFD) relative to the pa-

rameter values indicated in Table V may further enhance
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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efficiency of the searches. However, the increased efficie
beyond that which can be achieved with those param
values, may not warrant the extra effort spent in detai
optimization of these parameters. If such an optimization
undertaken, one should note that when imposing a maxim
on the number Lanczos iterationsnL

max, a simultaneous ad
justment ofdlL can serve to reduce the number of actu
iterations performed~when the lowest Hessian eigenvalue
converging fast enough to meet this criterion!. The relation
between the maximum number of dimer rotationsnD

max and
the maximum allowed rotational forcedFD is similar. The
actual number of dimer rotations can be reduced if the m
mum rotational force criterion is met before the maximu
number of rotations have been performed. IncreasingnL

max

(nD
max) and/or decreasingdlL (dFD), while keeping all other

parameters fixed, will tend to lead to better streambed
lowing and therefore more conservative searches, i.e., o
the lowest lying saddle points will be found.

A proper choice ofDxmax is important for the Lanczos
and dimer methods, as it also is for the RFO approache
can be used to tune the efficiency of the searches in term
the number of force calls needed and to optimize the var
of saddle points found. The optimal strategy will be differe
for different applications. If the lowest saddle point is d
sired, or only a few searches can be run because of comp
limitations, a conservative setting is preferred. If ma
saddles are desired and many searches can be run, an a
sive, large value of the maximum step length will be bet
This is demonstrated in Fig. 4 by displaying the performan
of 500 Lanczos and dimer searches for varying maxim
step lengths for the 525D system, employing the param
settings given in Table V. For a small step length, few sad
points are found@Fig. 4~a!#, but most of them are directly
connected to the starting minimum. As the maximum len
is increased the searches become more aggressive.
search requires fewer force calls@Fig. 4~b!#, reaching a mini-
mum of 376.5~303.1! at Dxmax50.45~0.45! Å for the Lanc-
zos ~dimer! method. At the same time, more saddle poi
are found so that the number of force calls per saddle p
which is directly connected to the starting minimum al
drops, reaching a minimum of 2751.3~2723.2! at Dxmax

50.35 ~0.30! Å @Fig. 4~c!#. For very aggressive searche
with the maximum step length greater than 0.45~0.45! Å the
cost per search increases@Fig. 4~b!# due to a tendency fo
some searches to take many iterations at high energy be
converging. The number of saddle points found, not nec
sarily directly connected to the starting minimum, increa
with increasing maximum step length, reaching 286~368!
out of 500 searches atDxmax50.5 ~0.35! Å @Fig. 4~d!#. This
large range of different saddle points can be valuable
some applications, but if one is interested in as many sad
points which are directly connected to the starting minim
as possible, a maximum step length of 0.35~0.30! Å is op-
timal @Fig. 4~c!#. Note that from a comparison of results fro
Fig. 4 and Table IV, it is seen that little is lost by employin
the standard settings from Table V as compared to the m
fully optimized parameters used in Sec. IV C.

The parameterDxran ~the distance with which the system
is randomly displaced away from the starting minimum! also
Downloaded 30 Dec 2004 to 128.95.104.66. Redistribution subject to AIP
cy
er
d
is
m

l

i-

l-
en

It
of

ty
t
-
ter

res-
r.
e

er
le

h
ach

s
nt

re
s-
s

r
es

re

influences the outcome of the searches. It is seen from Ta
III and IV that similar considerations apply as forDxmax. If
only the lowest saddle point is desired, or the number
searches need to be limited due to computational limitatio
a small value~0.1 Å! is preferred. However, if one attemp
to make a map of all relevant saddle points and ma
searches can be run, a larger value~0.2–0.3 Å! will in most
cases be better.

It is important that a saddle point search method can
run with minimal adjustments of parameters. From the ab
considerations it is clear that for most applications only t
parameters (Dxmax,Dxran) need to be considered when em
ploying the Lanczos or dimer method. These are the sa
two parameters that need to be optimized when employ
the ~hybrid! RFO methods, and one should therefore co
sider the minimum mode following methods as easy in u
as the~hybrid! RFO methods. Thus, which method to choo
can be decided purely on how well the different metho
perform in a given situation.

The results presented above and in the three Secs. I
IV B, and IV C show that the Lanczos and dimer methods
rather similar both with respect to the average number
force calls needed to reach the saddle points and the num
of saddle points found directly connected to the initial min
mum. Also when considering the total computational eff
they perform similarly, as seen from Fig. 5.

For the low-dimensional system there is little differen

FIG. 4. Results of 500 Lanczos and dimer searches for varying maxim
step lengthsDxmax for the 525D system, employing the parameter settin
given in Table V.~a! The number of saddle points found within 4 eV of th
starting minimum and directly connected to it.~b! The average number o
force calls needed to reach them.~c! The average number of force calls pe
saddle point found within 4 eV of the starting minimum and directly co
nected to it.~d! The total number of saddle points found, including tho
that are not directly connected to the starting minimum.
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TABLE VI. In the table the preferred method for optimal saddle point searches is indicated for different s
sizes. It depends on whether the force is cheap to calculate~e.g., if the force is obtained analytically from
simple model potential as in the present case! or expensive to calculate~e.g., if it is obtained from an electronic
structure calculation at the density functional theory or at higher levels!. The preferred method also depends
whether the goal of the study is to find only the few lowest saddle points or a more complete mapping
saddle points is intended. The guidelines are given based on a combination of the considerations pres
Sec. IV D. The word hybrid within parentheses indicates that both the standard and hybrid versions of th
method could be used. For the 21D and 525D systems, it is essential to used a good estimate of th
Hessian for the~hybrid! RFO approach with a Bofill update. Otherwise the minimum mode following meth
will be the preferred choice.

System size

Cheap force Expensive force

Lowest saddle points All saddle points Lowest saddle points All saddle poin

3D ~Hybrid! RFO exact Minimum mode or
~Hybrid! RFO exact

~Hybrid! RFO Bofill Minimum mode or
~Hybrid! RFO Bofill

21D ~Hybrid! RFO exact ~Hybrid! RFO exact ~Hybrid! RFO Bofill Minimum mode or
~Hybrid! RFO Bofill

525D Minimum mode Minimum mode Minimum mode or
~Hybrid! RFO Bofill
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between the RFO methods using the two approximate H
sians, the Bofill and Powell updaters. But when increas
the dimension of the system the Bofill updater clearly p
forms better than the Powell updater. This holds for searc
started with an exact initial Hessian as well as with a u
matrix. Therefore the RFO approach with a Bofill upda
will be considered as the representative RFO method with
approximate Hessian in the following comparisons.

In determining the most efficient saddle point sea
method for the 525D system, a number of considerati
must be made, and they lead to guidelines for optimal sea
methods as summarized in Table VI. When working with
rather simple model potential where the force can be ca
lated cheaply ~through analytical derivatives, as in th
present study!, the cost of the full diagonalization of th
Hessian matrix renders the~hybrid! RFO approaches far to
computationally demanding compared to the minimum mo
following methods~Fig. 5!. However, if calculating the force
becomes much more expensive, e.g., when it is obta
from an electronic structure calculation at the density fu
tional theory or higher levels, the diagonalization may
longer be the dominant part. But since an increasing cos
calculating the force also implies that the calculation of
exact Hessian would become very demanding, the~hybrid!
RFO approach employing an exact Hessian would still no
an alternative to the minimum mode following methods. T
argument does not apply to the approximate~hybrid! RFO
scheme, where the computational cost will be dominated
the force evaluations. From Table IV we see that the~hybrid!
RFO approach with a Bofill update of the approximate H
sian starting from an exact initial Hessian locates the sad
points using on average less force calls than the minim
mode following methods, and it will therefore be favore
with respect to the computational effort. However, the ta
also shows that the minimum mode following methods
cate appreciably more saddle points and requires cons
able less force calls per saddle point found that is dire
connected to the starting minimum than the~hybrid! RFO
approach with a Bofill update. Taken together this indica
that if only the lowest saddle points are sought, and one
c 2004 to 128.95.104.66. Redistribution subject to AIP
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start the search with a good initial estimate of the Hess
and the cost of the diagonalization will not be dominatin
the ~hybrid! RFO approach with a Bofill updater is to b
preferred above the minimum mode following methods. B
in all other cases the minimum mode following metho
clearly represent the better choice. Note that the requirem
of starting with a good initial estimate of the Hessian for t
~hybrid! RFO approach might further limit the use of th
method in the case of high-dimensional systems.

Similar considerations can be made for the 21D syste

FIG. 5. ~Color online! The total computational effort is given in CPU
seconds for the different system sizes. Representative results for
method are presented forDxran50.1 Å. For the minimum mode following
methods the effort is completely dominated by the force calls. For the hy
RFO ~HRFO! method employing an exact Hessian the computational ef
of calculating the Hessian together with the diagonalization of it has b
indicated separately. Since similar results are found for the RFO meth
employing an approximate Hessian they have not been included in
figure. The lines are meant as a guide to the eye. Note the logarithmic s
on both axes.
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If the force can be calculated cheaply, we see from Fig. 5
the ~hybrid! RFO approach using an exact Hessian requ
the least total computational effort, and the method e
ciently locates the lowest saddle points. From Table III
also see that this method is the most efficient with respec
the number of force calls needed per saddle point found
is directly connected to the starting minimum. Consider
the case where the force is expensive to calculate, the~hy-
brid! RFO approach with an exact Hessian is no longer
alternative~see preceding paragraph!. However, the~hybrid!
RFO approach with a Bofill updater requires considera
less force calls than the minimum mode following metho
and locates the lowest saddle points efficiently. But if t
goal is to locate as many saddle points as possible, we
from Table III that only in the case of starting the search
with a good initial Hessian does the~hybrid! RFO approach
with a Bofill updater require less force calls per saddle po
found than the minimum mode methods. The guidelines
optimal search methods for the 21D system are summar
in Table VI.

From Fig. 5 we see that the~hybrid! RFO approach us
ing an exact Hessian requires the least total computati
effort for the 3D system when the force is cheap to calcula
and this will therefore be the preferred method if the low
saddle points are sought. But even if all methods are abl
locate all five saddle points, Fig. 3 indicates that the Lanc
method finds the most difficult to locate saddle point mo
often than the~hybrid! RFO approach with an exact Hessia
suggesting that less searches employing the Lanczos me
would be needed as compared to the~hybrid! RFO approach
with an exact Hessian when attempting to locate as m
saddle points as possible. Taking this into account, the La
zos method and~hybrid! RFO approach with an exact He
sian would perform almost equally well. For cases where
force is expensive to calculate the~hybrid! RFO approach
using an exact Hessian would become too computation
demanding compared to the other methods~see above!. But
from Table II we see that the~hybrid! RFO approach with a
Bofill update requires considerably less force calls to re
the saddle points than the minimum mode methods, mak
it the preferred method when seeking to locate the low
saddle points. As in the case where the force is chea
calculate, the different efficiencies in finding the most dif
cult to locate saddle point render the performance of
~hybrid! RFO approach with a Bofill update and the Lancz
method rather similar. In Table VI the guidelines for optim
search methods for the 3D system are summarized.

In closing this section, we would like to stress that
different maximum step length is required for optimal pe
formance of the different methods.

V. CONCLUSIONS

Being able to locate saddle points on PESs is a pre
uisite to the study of transitions when working within th
harmonic approximation to transition state theory~whether
used explicitly or implicitly!. It is therefore not surprising
that there has been a large number of studies in which
ferent saddle point search methods have been develope
refined. However, in many cases it is assumed that a rea
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able guess for the saddle point can be made and/or tha
transition proceeds to a known final state. The number
studies describing methods allowing one to walk from
minimum to a saddle point without any knowledge of t
final state are more limited, and, to the best of our kno
edge, a systematic comparison of how such methods perf
has not yet been made. In an effort to improve this situat
we have set out to compare some traditional all-mode
lowing methods with more recently developed minimu
mode following methods.

As representative examples of the all-mode followi
methods we have investigated the performance of so
modified Newton-Raphson approaches, the RFO meth
pioneered by Cerjan and Miller1 and Simonset al.3,5 using
either exact or approximate Hessians. In these method
Hessian eigenvalues and eigenvectors are used together
the gradient vector to calculate the steps leading toward
saddle point. A comparison is made between the differ
versions of the all-mode following methods and also w
two minimum mode following approaches, the Lanczos a
dimer methods, where only the lowest eigenvalue and eig
vector are used in conjunction with the gradient vector
determine the steps. We have also tested the performan
hybrid versions of the RFO approaches in which the geo
etry steps are determined as in the minimum mode follow
methods in the convex regions of the PES~where all Hessian
eigenvalues are positive! and as in the traditional RFO meth
ods outside these regions. The PES walkers have been t
on a model system involving transitions in a seven-atom
island on a Pt~111! surface using a simple Morse pairwis
potential function. Three different model system sizes ha
been considered—the full system with 175 moving ato
and two reduced size systems. The PES governing the t
sitions for the largest system is a 525D one, the reduced
systems are of 21D and 3D, respectively.

In terms of the average number of force calls needed
reach the different saddle points the RFO approach emp
ing an exact Hessian is clearly better than the RFO
proaches employing an approximate Hessian or the m
mum mode following methods. However, due to the cost
calculating the exact Hessian and the cost of performin
full diagonalization of it, the total computational effort is i
most cases unfavorable compared to the other methods.
when the Hessian matrix can be calculated cheaply and
diagonalization of it does not dominate the overall effort, t
RFO approach employing an exact Hessian is the most
cient of the methods we have tested. This is the case
small ~3D! and medium~21D! sized systems where, e.g.,
simple model potential like the one used here is emplo
and the Hessian matrix can be obtained analytically with
much effort. Our results also show that the traditional RF
approach employing an exact Hessian mainly finds the lo
est saddle points, but this behavior can be improved con
erably by starting the search further away from the start
minimum or by employing the hybrid version introduce
here.

With respect to the average number of force calls
RFO searches based on a Bofill update of the approxim
Hessian also perform better than the minimum mode follo
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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ing methods for the three systems sizes tested here. But
to the cost of performing a full diagonalization of Hessia
the overall computational effort will only be favorable
situations were the cost of calculating the force clearly do
nates over the cost of the diagonalization. Furthermore
for the RFO approach employing an exact Hessian, the R
approach employing an approximate Hessian mainly loc
the lower-lying saddle points. For the small~3D! and me-
dium ~21D! sized system starting the search further aw
from the initial minimum or using the hybrid version im
proves this behavior considerably, but in the case of the la
~525D! system the improvement is less pronounced. Ta
together this means that the~hybrid! RFO approach employ
ing an approximate Hessian through a Bofill update is
most efficient of the methods tested here for the small
medium sized system, and when the cost of calculating
force represents the dominating part of the overall comp
tional effort. For large systems the~hybrid! RFO approach is
the most efficient only when the lowest saddle points
sought and the calculation of the force is dominating
overall computational effort. The latter is true if, e.g., t
force is obtained through an electronic structure calcula
at the density functional theory or higher levels. Starting
searches with a good initial approximation for the Hessia
not very important for the small~3D! systems, but a prereq
uisite for the medium~21D! and large~525D! systems.

The minimum mode following methods are to be pr
ferred if a more complete mapping of all existing sadd
points is desired for a large system. Also in the cases wh
only the lowest saddle points are sought for large syste
and the force can be evaluated cheaply~e.g., if a simple
model potential is used! the minimum mode following meth
ods will be the preferred choice. Moreover, the minimu
mode following methods will be preferred above the~hybrid!
RFO approach employing an approximate Hessian throu
Bofill update for large systems where the force is expens
to calculate and a good initial approximation for the Hess
is not available.

When working with the dimer method it is essential
limit the number of dimer rotations and to use a converge
criterion for the rotational force that is not too strict, i.e., n
to work with a fully converged lowest eigenmode. Althoug
somewhat less important for the Lanczos method, work
with a not fully converged lowest eigenmode by limiting th
number Lanczos iterations and using a less strict criterion
the Lanczos eigenvalue convergence, also improves the
formance of the method considerably. To facilitate the use
the minimum mode following methods we have presente
set of ‘‘safe’’ parameter settings that in most cases will res
in efficient saddle point searching. This renders the minim
mode following methods just as easy to use as the traditio
RFO approach.

Finally, for all methods it is seen that the maximu
length allowed for each geometry step is an important
rameter, and a good choice can reduce the computati
effort considerably and produce the wanted saddle p
search behavior. A proper choice of the initial displacem
away from the starting minimum is also important for obta
ing the desired search results.
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